mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-07 01:22:59 +08:00
175 lines
5.6 KiB
C++
175 lines
5.6 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/vision/matting/contrib/modnet.h"
|
|
#include "fastdeploy/utils/perf.h"
|
|
#include "fastdeploy/vision/utils/utils.h"
|
|
|
|
namespace fastdeploy {
|
|
|
|
namespace vision {
|
|
|
|
namespace matting {
|
|
|
|
MODNet::MODNet(const std::string& model_file, const std::string& params_file,
|
|
const RuntimeOption& custom_option,
|
|
const Frontend& model_format) {
|
|
if (model_format == Frontend::ONNX) {
|
|
valid_cpu_backends = {Backend::ORT}; // 指定可用的CPU后端
|
|
valid_gpu_backends = {Backend::ORT, Backend::TRT}; // 指定可用的GPU后端
|
|
} else {
|
|
valid_cpu_backends = {Backend::PDINFER, Backend::ORT};
|
|
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
|
|
}
|
|
runtime_option = custom_option;
|
|
runtime_option.model_format = model_format;
|
|
runtime_option.model_file = model_file;
|
|
runtime_option.params_file = params_file;
|
|
initialized = Initialize();
|
|
}
|
|
|
|
bool MODNet::Initialize() {
|
|
// parameters for preprocess
|
|
size = {256, 256};
|
|
alpha = {1.f / 127.5f, 1.f / 127.5f, 1.f / 127.5f};
|
|
beta = {-1.f, -1.f, -1.f}; // RGB
|
|
swap_rb = true;
|
|
|
|
if (!InitRuntime()) {
|
|
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool MODNet::Preprocess(Mat* mat, FDTensor* output,
|
|
std::map<std::string, std::array<int, 2>>* im_info) {
|
|
// 1. Resize
|
|
// 2. BGR2RGB
|
|
// 3. Convert(opencv style) or Normalize
|
|
// 4. HWC2CHW
|
|
int resize_w = size[0];
|
|
int resize_h = size[1];
|
|
if (resize_h != mat->Height() || resize_w != mat->Width()) {
|
|
Resize::Run(mat, resize_w, resize_h);
|
|
}
|
|
if (swap_rb) {
|
|
BGR2RGB::Run(mat);
|
|
}
|
|
|
|
Convert::Run(mat, alpha, beta);
|
|
// Record output shape of preprocessed image
|
|
(*im_info)["output_shape"] = {mat->Height(), mat->Width()};
|
|
|
|
HWC2CHW::Run(mat);
|
|
Cast::Run(mat, "float");
|
|
|
|
mat->ShareWithTensor(output);
|
|
output->shape.insert(output->shape.begin(), 1); // reshape to n, h, w, c
|
|
return true;
|
|
}
|
|
|
|
bool MODNet::Postprocess(
|
|
std::vector<FDTensor>& infer_result, MattingResult* result,
|
|
const std::map<std::string, std::array<int, 2>>& im_info) {
|
|
FDASSERT((infer_result.size() == 1),
|
|
"The default number of output tensor must be 1 according to "
|
|
"modnet.");
|
|
FDTensor& alpha_tensor = infer_result.at(0); // (1,h,w,1)
|
|
FDASSERT((alpha_tensor.shape[0] == 1), "Only support batch =1 now.");
|
|
if (alpha_tensor.dtype != FDDataType::FP32) {
|
|
FDERROR << "Only support post process with float32 data." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
// 先获取alpha并resize (使用opencv)
|
|
auto iter_ipt = im_info.find("input_shape");
|
|
auto iter_out = im_info.find("output_shape");
|
|
FDASSERT(iter_out != im_info.end() && iter_ipt != im_info.end(),
|
|
"Cannot find input_shape or output_shape from im_info.");
|
|
int out_h = iter_out->second[0];
|
|
int out_w = iter_out->second[1];
|
|
int ipt_h = iter_ipt->second[0];
|
|
int ipt_w = iter_ipt->second[1];
|
|
|
|
// TODO: 需要修改成FDTensor或Mat的运算 现在依赖cv::Mat
|
|
float* alpha_ptr = static_cast<float*>(alpha_tensor.Data());
|
|
cv::Mat alpha_zero_copy_ref(out_h, out_w, CV_32FC1, alpha_ptr);
|
|
Mat alpha_resized(alpha_zero_copy_ref); // ref-only, zero copy.
|
|
if ((out_h != ipt_h) || (out_w != ipt_w)) {
|
|
// already allocated a new continuous memory after resize.
|
|
// cv::resize(alpha_resized, alpha_resized, cv::Size(ipt_w, ipt_h));
|
|
Resize::Run(&alpha_resized, ipt_w, ipt_h, -1, -1);
|
|
}
|
|
|
|
result->Clear();
|
|
// note: must be setup shape before Resize
|
|
result->contain_foreground = false;
|
|
// 和输入原图大小对应的alpha
|
|
result->shape = {static_cast<int64_t>(ipt_h), static_cast<int64_t>(ipt_w)};
|
|
int numel = ipt_h * ipt_w;
|
|
int nbytes = numel * sizeof(float);
|
|
result->Resize(numel);
|
|
std::memcpy(result->alpha.data(), alpha_resized.GetCpuMat()->data, nbytes);
|
|
return true;
|
|
}
|
|
|
|
bool MODNet::Predict(cv::Mat* im, MattingResult* result) {
|
|
#ifdef FASTDEPLOY_DEBUG
|
|
TIMERECORD_START(0)
|
|
#endif
|
|
|
|
Mat mat(*im);
|
|
std::vector<FDTensor> input_tensors(1);
|
|
|
|
std::map<std::string, std::array<int, 2>> im_info;
|
|
// Record the shape of image and the shape of preprocessed image
|
|
im_info["input_shape"] = {mat.Height(), mat.Width()};
|
|
im_info["output_shape"] = {mat.Height(), mat.Width()};
|
|
|
|
if (!Preprocess(&mat, &input_tensors[0], &im_info)) {
|
|
FDERROR << "Failed to preprocess input image." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
#ifdef FASTDEPLOY_DEBUG
|
|
TIMERECORD_END(0, "Preprocess")
|
|
TIMERECORD_START(1)
|
|
#endif
|
|
|
|
input_tensors[0].name = InputInfoOfRuntime(0).name;
|
|
std::vector<FDTensor> output_tensors;
|
|
if (!Infer(input_tensors, &output_tensors)) {
|
|
FDERROR << "Failed to inference." << std::endl;
|
|
return false;
|
|
}
|
|
#ifdef FASTDEPLOY_DEBUG
|
|
TIMERECORD_END(1, "Inference")
|
|
TIMERECORD_START(2)
|
|
#endif
|
|
|
|
if (!Postprocess(output_tensors, result, im_info)) {
|
|
FDERROR << "Failed to post process." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
#ifdef FASTDEPLOY_DEBUG
|
|
TIMERECORD_END(2, "Postprocess")
|
|
#endif
|
|
return true;
|
|
}
|
|
|
|
} // namespace matting
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|