mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-12 20:11:20 +08:00

* Validate all backends for detection models and add demo code and doc * Delete .README.md.swp
259 lines
9.2 KiB
C++
259 lines
9.2 KiB
C++
#include "fastdeploy/vision/detection/ppdet/ppyoloe.h"
|
|
#include "fastdeploy/vision/utils/utils.h"
|
|
#include "yaml-cpp/yaml.h"
|
|
#ifdef ENABLE_PADDLE_FRONTEND
|
|
#include "paddle2onnx/converter.h"
|
|
#endif
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
namespace detection {
|
|
|
|
PPYOLOE::PPYOLOE(const std::string& model_file, const std::string& params_file,
|
|
const std::string& config_file,
|
|
const RuntimeOption& custom_option,
|
|
const Frontend& model_format) {
|
|
config_file_ = config_file;
|
|
valid_cpu_backends = {Backend::ORT, Backend::PDINFER};
|
|
valid_gpu_backends = {Backend::ORT, Backend::PDINFER, Backend::TRT};
|
|
runtime_option = custom_option;
|
|
runtime_option.model_format = model_format;
|
|
runtime_option.model_file = model_file;
|
|
runtime_option.params_file = params_file;
|
|
initialized = Initialize();
|
|
}
|
|
|
|
void PPYOLOE::GetNmsInfo() {
|
|
if (runtime_option.model_format == Frontend::PADDLE) {
|
|
std::string contents;
|
|
if (!ReadBinaryFromFile(runtime_option.model_file, &contents)) {
|
|
return;
|
|
}
|
|
auto reader = paddle2onnx::PaddleReader(contents.c_str(), contents.size());
|
|
if (reader.has_nms) {
|
|
has_nms_ = true;
|
|
background_label = reader.nms_params.background_label;
|
|
keep_top_k = reader.nms_params.keep_top_k;
|
|
nms_eta = reader.nms_params.nms_eta;
|
|
nms_threshold = reader.nms_params.nms_threshold;
|
|
score_threshold = reader.nms_params.score_threshold;
|
|
nms_top_k = reader.nms_params.nms_top_k;
|
|
normalized = reader.nms_params.normalized;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool PPYOLOE::Initialize() {
|
|
#ifdef ENABLE_PADDLE_FRONTEND
|
|
// remove multiclass_nms3 now
|
|
// this is a trick operation for ppyoloe while inference on trt
|
|
GetNmsInfo();
|
|
runtime_option.remove_multiclass_nms_ = true;
|
|
runtime_option.custom_op_info_["multiclass_nms3"] = "MultiClassNMS";
|
|
#endif
|
|
if (!BuildPreprocessPipelineFromConfig()) {
|
|
FDERROR << "Failed to build preprocess pipeline from configuration file."
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
if (!InitRuntime()) {
|
|
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
if (has_nms_ && runtime_option.backend == Backend::TRT) {
|
|
FDINFO << "Detected operator multiclass_nms3 in your model, will replace "
|
|
"it with fastdeploy::backend::MultiClassNMS(background_label="
|
|
<< background_label << ", keep_top_k=" << keep_top_k
|
|
<< ", nms_eta=" << nms_eta << ", nms_threshold=" << nms_threshold
|
|
<< ", score_threshold=" << score_threshold
|
|
<< ", nms_top_k=" << nms_top_k << ", normalized=" << normalized
|
|
<< ")." << std::endl;
|
|
has_nms_ = false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool PPYOLOE::BuildPreprocessPipelineFromConfig() {
|
|
processors_.clear();
|
|
YAML::Node cfg;
|
|
try {
|
|
cfg = YAML::LoadFile(config_file_);
|
|
} catch (YAML::BadFile& e) {
|
|
FDERROR << "Failed to load yaml file " << config_file_
|
|
<< ", maybe you should check this file." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
processors_.push_back(std::make_shared<BGR2RGB>());
|
|
|
|
for (const auto& op : cfg["Preprocess"]) {
|
|
std::string op_name = op["type"].as<std::string>();
|
|
if (op_name == "NormalizeImage") {
|
|
auto mean = op["mean"].as<std::vector<float>>();
|
|
auto std = op["std"].as<std::vector<float>>();
|
|
bool is_scale = op["is_scale"].as<bool>();
|
|
processors_.push_back(std::make_shared<Normalize>(mean, std, is_scale));
|
|
} else if (op_name == "Resize") {
|
|
bool keep_ratio = op["keep_ratio"].as<bool>();
|
|
auto target_size = op["target_size"].as<std::vector<int>>();
|
|
int interp = op["interp"].as<int>();
|
|
FDASSERT(target_size.size(),
|
|
"Require size of target_size be 2, but now it's " +
|
|
std::to_string(target_size.size()) + ".");
|
|
if (!keep_ratio) {
|
|
int width = target_size[1];
|
|
int height = target_size[0];
|
|
processors_.push_back(
|
|
std::make_shared<Resize>(width, height, -1.0, -1.0, interp, false));
|
|
} else {
|
|
int min_target_size = std::min(target_size[0], target_size[1]);
|
|
int max_target_size = std::max(target_size[0], target_size[1]);
|
|
processors_.push_back(std::make_shared<ResizeByShort>(
|
|
min_target_size, interp, true, max_target_size));
|
|
}
|
|
} else if (op_name == "Permute") {
|
|
// Do nothing, do permute as the last operation
|
|
continue;
|
|
// processors_.push_back(std::make_shared<HWC2CHW>());
|
|
} else if (op_name == "Pad") {
|
|
auto size = op["size"].as<std::vector<int>>();
|
|
auto value = op["fill_value"].as<std::vector<float>>();
|
|
processors_.push_back(std::make_shared<Cast>("float"));
|
|
processors_.push_back(
|
|
std::make_shared<PadToSize>(size[1], size[0], value));
|
|
} else if (op_name == "PadStride") {
|
|
auto stride = op["stride"].as<int>();
|
|
processors_.push_back(
|
|
std::make_shared<StridePad>(stride, std::vector<float>(3, 0)));
|
|
} else {
|
|
FDERROR << "Unexcepted preprocess operator: " << op_name << "."
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
}
|
|
processors_.push_back(std::make_shared<HWC2CHW>());
|
|
return true;
|
|
}
|
|
|
|
bool PPYOLOE::Preprocess(Mat* mat, std::vector<FDTensor>* outputs) {
|
|
int origin_w = mat->Width();
|
|
int origin_h = mat->Height();
|
|
for (size_t i = 0; i < processors_.size(); ++i) {
|
|
if (!(*(processors_[i].get()))(mat)) {
|
|
FDERROR << "Failed to process image data in " << processors_[i]->Name()
|
|
<< "." << std::endl;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
outputs->resize(2);
|
|
(*outputs)[0].name = InputInfoOfRuntime(0).name;
|
|
mat->ShareWithTensor(&((*outputs)[0]));
|
|
|
|
// reshape to [1, c, h, w]
|
|
(*outputs)[0].shape.insert((*outputs)[0].shape.begin(), 1);
|
|
|
|
(*outputs)[1].Allocate({1, 2}, FDDataType::FP32, InputInfoOfRuntime(1).name);
|
|
float* ptr = static_cast<float*>((*outputs)[1].MutableData());
|
|
ptr[0] = mat->Height() * 1.0 / origin_h;
|
|
ptr[1] = mat->Width() * 1.0 / origin_w;
|
|
return true;
|
|
}
|
|
|
|
bool PPYOLOE::Postprocess(std::vector<FDTensor>& infer_result,
|
|
DetectionResult* result) {
|
|
FDASSERT(infer_result[1].shape[0] == 1,
|
|
"Only support batch = 1 in FastDeploy now.");
|
|
|
|
if (!has_nms_) {
|
|
int boxes_index = 0;
|
|
int scores_index = 1;
|
|
if (infer_result[0].shape[1] == infer_result[1].shape[2]) {
|
|
boxes_index = 0;
|
|
scores_index = 1;
|
|
} else if (infer_result[0].shape[2] == infer_result[1].shape[1]) {
|
|
boxes_index = 1;
|
|
scores_index = 0;
|
|
} else {
|
|
FDERROR << "The shape of boxes and scores should be [batch, boxes_num, "
|
|
"4], [batch, classes_num, boxes_num]"
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
|
|
backend::MultiClassNMS nms;
|
|
nms.background_label = background_label;
|
|
nms.keep_top_k = keep_top_k;
|
|
nms.nms_eta = nms_eta;
|
|
nms.nms_threshold = nms_threshold;
|
|
nms.score_threshold = score_threshold;
|
|
nms.nms_top_k = nms_top_k;
|
|
nms.normalized = normalized;
|
|
nms.Compute(static_cast<float*>(infer_result[boxes_index].Data()),
|
|
static_cast<float*>(infer_result[scores_index].Data()),
|
|
infer_result[boxes_index].shape,
|
|
infer_result[scores_index].shape);
|
|
if (nms.out_num_rois_data[0] > 0) {
|
|
result->Reserve(nms.out_num_rois_data[0]);
|
|
}
|
|
for (size_t i = 0; i < nms.out_num_rois_data[0]; ++i) {
|
|
result->label_ids.push_back(nms.out_box_data[i * 6]);
|
|
result->scores.push_back(nms.out_box_data[i * 6 + 1]);
|
|
result->boxes.emplace_back(std::array<float, 4>{
|
|
nms.out_box_data[i * 6 + 2], nms.out_box_data[i * 6 + 3],
|
|
nms.out_box_data[i * 6 + 4], nms.out_box_data[i * 6 + 5]});
|
|
}
|
|
} else {
|
|
int box_num = 0;
|
|
if (infer_result[1].dtype == FDDataType::INT32) {
|
|
box_num = *(static_cast<int32_t*>(infer_result[1].Data()));
|
|
} else if (infer_result[1].dtype == FDDataType::INT64) {
|
|
box_num = *(static_cast<int64_t*>(infer_result[1].Data()));
|
|
} else {
|
|
FDASSERT(
|
|
false,
|
|
"The output box_num of PPYOLOE model should be type of int32/int64.");
|
|
}
|
|
result->Reserve(box_num);
|
|
float* box_data = static_cast<float*>(infer_result[0].Data());
|
|
for (size_t i = 0; i < box_num; ++i) {
|
|
result->label_ids.push_back(box_data[i * 6]);
|
|
result->scores.push_back(box_data[i * 6 + 1]);
|
|
result->boxes.emplace_back(
|
|
std::array<float, 4>{box_data[i * 6 + 2], box_data[i * 6 + 3],
|
|
box_data[i * 6 + 4], box_data[i * 6 + 5]});
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool PPYOLOE::Predict(cv::Mat* im, DetectionResult* result) {
|
|
Mat mat(*im);
|
|
std::vector<FDTensor> processed_data;
|
|
if (!Preprocess(&mat, &processed_data)) {
|
|
FDERROR << "Failed to preprocess input data while using model:"
|
|
<< ModelName() << "." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
float* tmp = static_cast<float*>(processed_data[1].Data());
|
|
std::vector<FDTensor> infer_result;
|
|
if (!Infer(processed_data, &infer_result)) {
|
|
FDERROR << "Failed to inference while using model:" << ModelName() << "."
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
|
|
if (!Postprocess(infer_result, result)) {
|
|
FDERROR << "Failed to postprocess while using model:" << ModelName() << "."
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
} // namespace detection
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|