mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 11:56:44 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			105 lines
		
	
	
		
			3.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			105 lines
		
	
	
		
			3.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of Eigen, a lightweight C++ template library
 | |
| // for linear algebra.
 | |
| //
 | |
| // Copyright (C) 2010 Manuel Yguel <manuel.yguel@gmail.com>
 | |
| //
 | |
| // This Source Code Form is subject to the terms of the Mozilla
 | |
| // Public License v. 2.0. If a copy of the MPL was not distributed
 | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | |
| 
 | |
| #include <iostream>
 | |
| #include <unsupported/Eigen/Polynomials>
 | |
| #include "main.h"
 | |
| 
 | |
| using namespace std;
 | |
| 
 | |
| namespace Eigen {
 | |
| namespace internal {
 | |
| template <int Size>
 | |
| struct increment_if_fixed_size {
 | |
|   enum { ret = (Size == Dynamic) ? Dynamic : Size + 1 };
 | |
| };
 | |
| }
 | |
| }
 | |
| 
 | |
| template <typename _Scalar, int _Deg>
 | |
| void realRoots_to_monicPolynomial_test(int deg) {
 | |
|   typedef internal::increment_if_fixed_size<_Deg> Dim;
 | |
|   typedef Matrix<_Scalar, Dim::ret, 1> PolynomialType;
 | |
|   typedef Matrix<_Scalar, _Deg, 1> EvalRootsType;
 | |
| 
 | |
|   PolynomialType pols(deg + 1);
 | |
|   EvalRootsType roots = EvalRootsType::Random(deg);
 | |
|   roots_to_monicPolynomial(roots, pols);
 | |
| 
 | |
|   EvalRootsType evr(deg);
 | |
|   for (int i = 0; i < roots.size(); ++i) {
 | |
|     evr[i] = std::abs(poly_eval(pols, roots[i]));
 | |
|   }
 | |
| 
 | |
|   bool evalToZero = evr.isZero(test_precision<_Scalar>());
 | |
|   if (!evalToZero) {
 | |
|     cerr << evr.transpose() << endl;
 | |
|   }
 | |
|   VERIFY(evalToZero);
 | |
| }
 | |
| 
 | |
| template <typename _Scalar>
 | |
| void realRoots_to_monicPolynomial_scalar() {
 | |
|   CALL_SUBTEST_2((realRoots_to_monicPolynomial_test<_Scalar, 2>(2)));
 | |
|   CALL_SUBTEST_3((realRoots_to_monicPolynomial_test<_Scalar, 3>(3)));
 | |
|   CALL_SUBTEST_4((realRoots_to_monicPolynomial_test<_Scalar, 4>(4)));
 | |
|   CALL_SUBTEST_5((realRoots_to_monicPolynomial_test<_Scalar, 5>(5)));
 | |
|   CALL_SUBTEST_6((realRoots_to_monicPolynomial_test<_Scalar, 6>(6)));
 | |
|   CALL_SUBTEST_7((realRoots_to_monicPolynomial_test<_Scalar, 7>(7)));
 | |
|   CALL_SUBTEST_8((realRoots_to_monicPolynomial_test<_Scalar, 17>(17)));
 | |
| 
 | |
|   CALL_SUBTEST_9((realRoots_to_monicPolynomial_test<_Scalar, Dynamic>(
 | |
|       internal::random<int>(18, 26))));
 | |
| }
 | |
| 
 | |
| template <typename _Scalar, int _Deg>
 | |
| void CauchyBounds(int deg) {
 | |
|   typedef internal::increment_if_fixed_size<_Deg> Dim;
 | |
|   typedef Matrix<_Scalar, Dim::ret, 1> PolynomialType;
 | |
|   typedef Matrix<_Scalar, _Deg, 1> EvalRootsType;
 | |
| 
 | |
|   PolynomialType pols(deg + 1);
 | |
|   EvalRootsType roots = EvalRootsType::Random(deg);
 | |
|   roots_to_monicPolynomial(roots, pols);
 | |
|   _Scalar M = cauchy_max_bound(pols);
 | |
|   _Scalar m = cauchy_min_bound(pols);
 | |
|   _Scalar Max = roots.array().abs().maxCoeff();
 | |
|   _Scalar min = roots.array().abs().minCoeff();
 | |
|   bool eval = (M >= Max) && (m <= min);
 | |
|   if (!eval) {
 | |
|     cerr << "Roots: " << roots << endl;
 | |
|     cerr << "Bounds: (" << m << ", " << M << ")" << endl;
 | |
|     cerr << "Min,Max: (" << min << ", " << Max << ")" << endl;
 | |
|   }
 | |
|   VERIFY(eval);
 | |
| }
 | |
| 
 | |
| template <typename _Scalar>
 | |
| void CauchyBounds_scalar() {
 | |
|   CALL_SUBTEST_2((CauchyBounds<_Scalar, 2>(2)));
 | |
|   CALL_SUBTEST_3((CauchyBounds<_Scalar, 3>(3)));
 | |
|   CALL_SUBTEST_4((CauchyBounds<_Scalar, 4>(4)));
 | |
|   CALL_SUBTEST_5((CauchyBounds<_Scalar, 5>(5)));
 | |
|   CALL_SUBTEST_6((CauchyBounds<_Scalar, 6>(6)));
 | |
|   CALL_SUBTEST_7((CauchyBounds<_Scalar, 7>(7)));
 | |
|   CALL_SUBTEST_8((CauchyBounds<_Scalar, 17>(17)));
 | |
| 
 | |
|   CALL_SUBTEST_9(
 | |
|       (CauchyBounds<_Scalar, Dynamic>(internal::random<int>(18, 26))));
 | |
| }
 | |
| 
 | |
| EIGEN_DECLARE_TEST(polynomialutils) {
 | |
|   for (int i = 0; i < g_repeat; i++) {
 | |
|     realRoots_to_monicPolynomial_scalar<double>();
 | |
|     realRoots_to_monicPolynomial_scalar<float>();
 | |
|     CauchyBounds_scalar<double>();
 | |
|     CauchyBounds_scalar<float>();
 | |
|   }
 | |
| }
 | 
