mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 11:56:44 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			216 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			216 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of Eigen, a lightweight C++ template library
 | |
| // for linear algebra.
 | |
| //
 | |
| // Copyright (C) 2010 Manuel Yguel <manuel.yguel@gmail.com>
 | |
| //
 | |
| // This Source Code Form is subject to the terms of the Mozilla
 | |
| // Public License v. 2.0. If a copy of the MPL was not distributed
 | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <iostream>
 | |
| #include <unsupported/Eigen/Polynomials>
 | |
| #include "main.h"
 | |
| 
 | |
| using namespace std;
 | |
| 
 | |
| namespace Eigen {
 | |
| namespace internal {
 | |
| template <int Size>
 | |
| struct increment_if_fixed_size {
 | |
|   enum { ret = (Size == Dynamic) ? Dynamic : Size + 1 };
 | |
| };
 | |
| }
 | |
| }
 | |
| 
 | |
| template <typename PolynomialType>
 | |
| PolynomialType polyder(const PolynomialType& p) {
 | |
|   typedef typename PolynomialType::Scalar Scalar;
 | |
|   PolynomialType res(p.size());
 | |
|   for (Index i = 1; i < p.size(); ++i) res[i - 1] = p[i] * Scalar(i);
 | |
|   res[p.size() - 1] = 0.;
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| template <int Deg, typename POLYNOMIAL, typename SOLVER>
 | |
| bool aux_evalSolver(const POLYNOMIAL& pols, SOLVER& psolve) {
 | |
|   typedef typename POLYNOMIAL::Scalar Scalar;
 | |
|   typedef typename POLYNOMIAL::RealScalar RealScalar;
 | |
| 
 | |
|   typedef typename SOLVER::RootsType RootsType;
 | |
|   typedef Matrix<RealScalar, Deg, 1> EvalRootsType;
 | |
| 
 | |
|   const Index deg = pols.size() - 1;
 | |
| 
 | |
|   // Test template constructor from coefficient vector
 | |
|   SOLVER solve_constr(pols);
 | |
| 
 | |
|   psolve.compute(pols);
 | |
|   const RootsType& roots(psolve.roots());
 | |
|   EvalRootsType evr(deg);
 | |
|   POLYNOMIAL pols_der = polyder(pols);
 | |
|   EvalRootsType der(deg);
 | |
|   for (int i = 0; i < roots.size(); ++i) {
 | |
|     evr[i] = std::abs(poly_eval(pols, roots[i]));
 | |
|     der[i] =
 | |
|         numext::maxi(RealScalar(1.), std::abs(poly_eval(pols_der, roots[i])));
 | |
|   }
 | |
| 
 | |
|   // we need to divide by the magnitude of the derivative because
 | |
|   // with a high derivative is very small error in the value of the root
 | |
|   // yiels a very large error in the polynomial evaluation.
 | |
|   bool evalToZero = (evr.cwiseQuotient(der)).isZero(test_precision<Scalar>());
 | |
|   if (!evalToZero) {
 | |
|     cerr << "WRONG root: " << endl;
 | |
|     cerr << "Polynomial: " << pols.transpose() << endl;
 | |
|     cerr << "Roots found: " << roots.transpose() << endl;
 | |
|     cerr << "Abs value of the polynomial at the roots: " << evr.transpose()
 | |
|          << endl;
 | |
|     cerr << endl;
 | |
|   }
 | |
| 
 | |
|   std::vector<RealScalar> rootModuli(roots.size());
 | |
|   Map<EvalRootsType> aux(&rootModuli[0], roots.size());
 | |
|   aux = roots.array().abs();
 | |
|   std::sort(rootModuli.begin(), rootModuli.end());
 | |
|   bool distinctModuli = true;
 | |
|   for (size_t i = 1; i < rootModuli.size() && distinctModuli; ++i) {
 | |
|     if (internal::isApprox(rootModuli[i], rootModuli[i - 1])) {
 | |
|       distinctModuli = false;
 | |
|     }
 | |
|   }
 | |
|   VERIFY(evalToZero || !distinctModuli);
 | |
| 
 | |
|   return distinctModuli;
 | |
| }
 | |
| 
 | |
| template <int Deg, typename POLYNOMIAL>
 | |
| void evalSolver(const POLYNOMIAL& pols) {
 | |
|   typedef typename POLYNOMIAL::Scalar Scalar;
 | |
| 
 | |
|   typedef PolynomialSolver<Scalar, Deg> PolynomialSolverType;
 | |
| 
 | |
|   PolynomialSolverType psolve;
 | |
|   aux_evalSolver<Deg, POLYNOMIAL, PolynomialSolverType>(pols, psolve);
 | |
| }
 | |
| 
 | |
| template <int Deg, typename POLYNOMIAL, typename ROOTS, typename REAL_ROOTS>
 | |
| void evalSolverSugarFunction(const POLYNOMIAL& pols, const ROOTS& roots,
 | |
|                              const REAL_ROOTS& real_roots) {
 | |
|   using std::sqrt;
 | |
|   typedef typename POLYNOMIAL::Scalar Scalar;
 | |
|   typedef typename POLYNOMIAL::RealScalar RealScalar;
 | |
| 
 | |
|   typedef PolynomialSolver<Scalar, Deg> PolynomialSolverType;
 | |
| 
 | |
|   PolynomialSolverType psolve;
 | |
|   if (aux_evalSolver<Deg, POLYNOMIAL, PolynomialSolverType>(pols, psolve)) {
 | |
|     // It is supposed that
 | |
|     // 1) the roots found are correct
 | |
|     // 2) the roots have distinct moduli
 | |
| 
 | |
|     // Test realRoots
 | |
|     std::vector<RealScalar> calc_realRoots;
 | |
|     psolve.realRoots(calc_realRoots, test_precision<RealScalar>());
 | |
|     VERIFY_IS_EQUAL(calc_realRoots.size(), (size_t)real_roots.size());
 | |
| 
 | |
|     const RealScalar psPrec = sqrt(test_precision<RealScalar>());
 | |
| 
 | |
|     for (size_t i = 0; i < calc_realRoots.size(); ++i) {
 | |
|       bool found = false;
 | |
|       for (size_t j = 0; j < calc_realRoots.size() && !found; ++j) {
 | |
|         if (internal::isApprox(calc_realRoots[i], real_roots[j], psPrec)) {
 | |
|           found = true;
 | |
|         }
 | |
|       }
 | |
|       VERIFY(found);
 | |
|     }
 | |
| 
 | |
|     // Test greatestRoot
 | |
|     VERIFY(internal::isApprox(roots.array().abs().maxCoeff(),
 | |
|                               abs(psolve.greatestRoot()), psPrec));
 | |
| 
 | |
|     // Test smallestRoot
 | |
|     VERIFY(internal::isApprox(roots.array().abs().minCoeff(),
 | |
|                               abs(psolve.smallestRoot()), psPrec));
 | |
| 
 | |
|     bool hasRealRoot;
 | |
|     // Test absGreatestRealRoot
 | |
|     RealScalar r = psolve.absGreatestRealRoot(hasRealRoot);
 | |
|     VERIFY(hasRealRoot == (real_roots.size() > 0));
 | |
|     if (hasRealRoot) {
 | |
|       VERIFY(internal::isApprox(real_roots.array().abs().maxCoeff(), abs(r),
 | |
|                                 psPrec));
 | |
|     }
 | |
| 
 | |
|     // Test absSmallestRealRoot
 | |
|     r = psolve.absSmallestRealRoot(hasRealRoot);
 | |
|     VERIFY(hasRealRoot == (real_roots.size() > 0));
 | |
|     if (hasRealRoot) {
 | |
|       VERIFY(internal::isApprox(real_roots.array().abs().minCoeff(), abs(r),
 | |
|                                 psPrec));
 | |
|     }
 | |
| 
 | |
|     // Test greatestRealRoot
 | |
|     r = psolve.greatestRealRoot(hasRealRoot);
 | |
|     VERIFY(hasRealRoot == (real_roots.size() > 0));
 | |
|     if (hasRealRoot) {
 | |
|       VERIFY(internal::isApprox(real_roots.array().maxCoeff(), r, psPrec));
 | |
|     }
 | |
| 
 | |
|     // Test smallestRealRoot
 | |
|     r = psolve.smallestRealRoot(hasRealRoot);
 | |
|     VERIFY(hasRealRoot == (real_roots.size() > 0));
 | |
|     if (hasRealRoot) {
 | |
|       VERIFY(internal::isApprox(real_roots.array().minCoeff(), r, psPrec));
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename _Scalar, int _Deg>
 | |
| void polynomialsolver(int deg) {
 | |
|   typedef typename NumTraits<_Scalar>::Real RealScalar;
 | |
|   typedef internal::increment_if_fixed_size<_Deg> Dim;
 | |
|   typedef Matrix<_Scalar, Dim::ret, 1> PolynomialType;
 | |
|   typedef Matrix<_Scalar, _Deg, 1> EvalRootsType;
 | |
|   typedef Matrix<RealScalar, _Deg, 1> RealRootsType;
 | |
| 
 | |
|   cout << "Standard cases" << endl;
 | |
|   PolynomialType pols = PolynomialType::Random(deg + 1);
 | |
|   evalSolver<_Deg, PolynomialType>(pols);
 | |
| 
 | |
|   cout << "Hard cases" << endl;
 | |
|   _Scalar multipleRoot = internal::random<_Scalar>();
 | |
|   EvalRootsType allRoots = EvalRootsType::Constant(deg, multipleRoot);
 | |
|   roots_to_monicPolynomial(allRoots, pols);
 | |
|   evalSolver<_Deg, PolynomialType>(pols);
 | |
| 
 | |
|   cout << "Test sugar" << endl;
 | |
|   RealRootsType realRoots = RealRootsType::Random(deg);
 | |
|   roots_to_monicPolynomial(realRoots, pols);
 | |
|   evalSolverSugarFunction<_Deg>(
 | |
|       pols, realRoots.template cast<std::complex<RealScalar> >().eval(),
 | |
|       realRoots);
 | |
| }
 | |
| 
 | |
| EIGEN_DECLARE_TEST(polynomialsolver) {
 | |
|   for (int i = 0; i < g_repeat; i++) {
 | |
|     CALL_SUBTEST_1((polynomialsolver<float, 1>(1)));
 | |
|     CALL_SUBTEST_2((polynomialsolver<double, 2>(2)));
 | |
|     CALL_SUBTEST_3((polynomialsolver<double, 3>(3)));
 | |
|     CALL_SUBTEST_4((polynomialsolver<float, 4>(4)));
 | |
|     CALL_SUBTEST_5((polynomialsolver<double, 5>(5)));
 | |
|     CALL_SUBTEST_6((polynomialsolver<float, 6>(6)));
 | |
|     CALL_SUBTEST_7((polynomialsolver<float, 7>(7)));
 | |
|     CALL_SUBTEST_8((polynomialsolver<double, 8>(8)));
 | |
| 
 | |
|     CALL_SUBTEST_9(
 | |
|         (polynomialsolver<float, Dynamic>(internal::random<int>(9, 13))));
 | |
|     CALL_SUBTEST_10(
 | |
|         (polynomialsolver<double, Dynamic>(internal::random<int>(9, 13))));
 | |
|     CALL_SUBTEST_11((polynomialsolver<float, Dynamic>(1)));
 | |
|     CALL_SUBTEST_12((polynomialsolver<std::complex<double>, Dynamic>(
 | |
|         internal::random<int>(2, 13))));
 | |
|   }
 | |
| }
 | 
