mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 11:56:44 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			210 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			210 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of Eigen, a lightweight C++ template library
 | |
| // for linear algebra.
 | |
| //
 | |
| // Copyright (C) 2012, 2013 Chen-Pang He <jdh8@ms63.hinet.net>
 | |
| //
 | |
| // This Source Code Form is subject to the terms of the Mozilla
 | |
| // Public License v. 2.0. If a copy of the MPL was not distributed
 | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | |
| 
 | |
| #include "matrix_functions.h"
 | |
| 
 | |
| template <typename T>
 | |
| void test2dRotation(const T& tol) {
 | |
|   Matrix<T, 2, 2> A, B, C;
 | |
|   T angle, c, s;
 | |
| 
 | |
|   A << 0, 1, -1, 0;
 | |
|   MatrixPower<Matrix<T, 2, 2> > Apow(A);
 | |
| 
 | |
|   for (int i = 0; i <= 20; ++i) {
 | |
|     angle = std::pow(T(10), T(i - 10) / T(5.));
 | |
|     c = std::cos(angle);
 | |
|     s = std::sin(angle);
 | |
|     B << c, s, -s, c;
 | |
| 
 | |
|     C = Apow(std::ldexp(angle, 1) / T(EIGEN_PI));
 | |
|     std::cout << "test2dRotation: i = " << i
 | |
|               << "   error powerm = " << relerr(C, B) << '\n';
 | |
|     VERIFY(C.isApprox(B, tol));
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| void test2dHyperbolicRotation(const T& tol) {
 | |
|   Matrix<std::complex<T>, 2, 2> A, B, C;
 | |
|   T angle, ch = std::cosh((T)1);
 | |
|   std::complex<T> ish(0, std::sinh((T)1));
 | |
| 
 | |
|   A << ch, ish, -ish, ch;
 | |
|   MatrixPower<Matrix<std::complex<T>, 2, 2> > Apow(A);
 | |
| 
 | |
|   for (int i = 0; i <= 20; ++i) {
 | |
|     angle = std::ldexp(static_cast<T>(i - 10), -1);
 | |
|     ch = std::cosh(angle);
 | |
|     ish = std::complex<T>(0, std::sinh(angle));
 | |
|     B << ch, ish, -ish, ch;
 | |
| 
 | |
|     C = Apow(angle);
 | |
|     std::cout << "test2dHyperbolicRotation: i = " << i
 | |
|               << "   error powerm = " << relerr(C, B) << '\n';
 | |
|     VERIFY(C.isApprox(B, tol));
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| void test3dRotation(const T& tol) {
 | |
|   Matrix<T, 3, 1> v;
 | |
|   T angle;
 | |
| 
 | |
|   for (int i = 0; i <= 20; ++i) {
 | |
|     v = Matrix<T, 3, 1>::Random();
 | |
|     v.normalize();
 | |
|     angle = std::pow(T(10), T(i - 10) / T(5.));
 | |
|     VERIFY(AngleAxis<T>(angle, v).matrix().isApprox(
 | |
|         AngleAxis<T>(1, v).matrix().pow(angle), tol));
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename MatrixType>
 | |
| void testGeneral(const MatrixType& m,
 | |
|                  const typename MatrixType::RealScalar& tol) {
 | |
|   typedef typename MatrixType::RealScalar RealScalar;
 | |
|   MatrixType m1, m2, m3, m4, m5;
 | |
|   RealScalar x, y;
 | |
| 
 | |
|   for (int i = 0; i < g_repeat; ++i) {
 | |
|     generateTestMatrix<MatrixType>::run(m1, m.rows());
 | |
|     MatrixPower<MatrixType> mpow(m1);
 | |
| 
 | |
|     x = internal::random<RealScalar>();
 | |
|     y = internal::random<RealScalar>();
 | |
|     m2 = mpow(x);
 | |
|     m3 = mpow(y);
 | |
| 
 | |
|     m4 = mpow(x + y);
 | |
|     m5.noalias() = m2 * m3;
 | |
|     VERIFY(m4.isApprox(m5, tol));
 | |
| 
 | |
|     m4 = mpow(x * y);
 | |
|     m5 = m2.pow(y);
 | |
|     VERIFY(m4.isApprox(m5, tol));
 | |
| 
 | |
|     m4 = (std::abs(x) * m1).pow(y);
 | |
|     m5 = std::pow(std::abs(x), y) * m3;
 | |
|     VERIFY(m4.isApprox(m5, tol));
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename MatrixType>
 | |
| void testSingular(const MatrixType& m_const,
 | |
|                   const typename MatrixType::RealScalar& tol) {
 | |
|   // we need to pass by reference in order to prevent errors with
 | |
|   // MSVC for aligned data types ...
 | |
|   MatrixType& m = const_cast<MatrixType&>(m_const);
 | |
| 
 | |
|   const int IsComplex =
 | |
|       NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex;
 | |
|   typedef
 | |
|       typename internal::conditional<IsComplex,
 | |
|                                      TriangularView<MatrixType, Upper>,
 | |
|                                      const MatrixType&>::type TriangularType;
 | |
|   typename internal::conditional<IsComplex, ComplexSchur<MatrixType>,
 | |
|                                  RealSchur<MatrixType> >::type schur;
 | |
|   MatrixType T;
 | |
| 
 | |
|   for (int i = 0; i < g_repeat; ++i) {
 | |
|     m.setRandom();
 | |
|     m.col(0).fill(0);
 | |
| 
 | |
|     schur.compute(m);
 | |
|     T = schur.matrixT();
 | |
|     const MatrixType& U = schur.matrixU();
 | |
|     processTriangularMatrix<MatrixType>::run(m, T, U);
 | |
|     MatrixPower<MatrixType> mpow(m);
 | |
| 
 | |
|     T = T.sqrt();
 | |
|     VERIFY(mpow(0.5L).isApprox(U * (TriangularType(T) * U.adjoint()), tol));
 | |
| 
 | |
|     T = T.sqrt();
 | |
|     VERIFY(mpow(0.25L).isApprox(U * (TriangularType(T) * U.adjoint()), tol));
 | |
| 
 | |
|     T = T.sqrt();
 | |
|     VERIFY(mpow(0.125L).isApprox(U * (TriangularType(T) * U.adjoint()), tol));
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename MatrixType>
 | |
| void testLogThenExp(const MatrixType& m_const,
 | |
|                     const typename MatrixType::RealScalar& tol) {
 | |
|   // we need to pass by reference in order to prevent errors with
 | |
|   // MSVC for aligned data types ...
 | |
|   MatrixType& m = const_cast<MatrixType&>(m_const);
 | |
| 
 | |
|   typedef typename MatrixType::Scalar Scalar;
 | |
|   Scalar x;
 | |
| 
 | |
|   for (int i = 0; i < g_repeat; ++i) {
 | |
|     generateTestMatrix<MatrixType>::run(m, m.rows());
 | |
|     x = internal::random<Scalar>();
 | |
|     VERIFY(m.pow(x).isApprox((x * m.log()).exp(), tol));
 | |
|   }
 | |
| }
 | |
| 
 | |
| typedef Matrix<double, 3, 3, RowMajor> Matrix3dRowMajor;
 | |
| typedef Matrix<long double, 3, 3> Matrix3e;
 | |
| typedef Matrix<long double, Dynamic, Dynamic> MatrixXe;
 | |
| 
 | |
| EIGEN_DECLARE_TEST(matrix_power) {
 | |
|   CALL_SUBTEST_2(test2dRotation<double>(1e-13));
 | |
|   CALL_SUBTEST_1(test2dRotation<float>(
 | |
|       2e-5f));  // was 1e-5, relaxed for clang 2.8 / linux / x86-64
 | |
|   CALL_SUBTEST_9(test2dRotation<long double>(1e-13L));
 | |
|   CALL_SUBTEST_2(test2dHyperbolicRotation<double>(1e-14));
 | |
|   CALL_SUBTEST_1(test2dHyperbolicRotation<float>(1e-5f));
 | |
|   CALL_SUBTEST_9(test2dHyperbolicRotation<long double>(1e-14L));
 | |
| 
 | |
|   CALL_SUBTEST_10(test3dRotation<double>(1e-13));
 | |
|   CALL_SUBTEST_11(test3dRotation<float>(1e-5f));
 | |
|   CALL_SUBTEST_12(test3dRotation<long double>(1e-13L));
 | |
| 
 | |
|   CALL_SUBTEST_2(testGeneral(Matrix2d(), 1e-13));
 | |
|   CALL_SUBTEST_7(testGeneral(Matrix3dRowMajor(), 1e-13));
 | |
|   CALL_SUBTEST_3(testGeneral(Matrix4cd(), 1e-13));
 | |
|   CALL_SUBTEST_4(testGeneral(MatrixXd(8, 8), 2e-12));
 | |
|   CALL_SUBTEST_1(testGeneral(Matrix2f(), 1e-4f));
 | |
|   CALL_SUBTEST_5(testGeneral(Matrix3cf(), 1e-4f));
 | |
|   CALL_SUBTEST_8(testGeneral(Matrix4f(), 1e-4f));
 | |
|   CALL_SUBTEST_6(testGeneral(MatrixXf(2, 2), 1e-3f));  // see bug 614
 | |
|   CALL_SUBTEST_9(testGeneral(MatrixXe(7, 7), 1e-13L));
 | |
|   CALL_SUBTEST_10(testGeneral(Matrix3d(), 1e-13));
 | |
|   CALL_SUBTEST_11(testGeneral(Matrix3f(), 1e-4f));
 | |
|   CALL_SUBTEST_12(testGeneral(Matrix3e(), 1e-13L));
 | |
| 
 | |
|   CALL_SUBTEST_2(testSingular(Matrix2d(), 1e-13));
 | |
|   CALL_SUBTEST_7(testSingular(Matrix3dRowMajor(), 1e-13));
 | |
|   CALL_SUBTEST_3(testSingular(Matrix4cd(), 1e-13));
 | |
|   CALL_SUBTEST_4(testSingular(MatrixXd(8, 8), 2e-12));
 | |
|   CALL_SUBTEST_1(testSingular(Matrix2f(), 1e-4f));
 | |
|   CALL_SUBTEST_5(testSingular(Matrix3cf(), 1e-4f));
 | |
|   CALL_SUBTEST_8(testSingular(Matrix4f(), 1e-4f));
 | |
|   CALL_SUBTEST_6(testSingular(MatrixXf(2, 2), 1e-3f));
 | |
|   CALL_SUBTEST_9(testSingular(MatrixXe(7, 7), 1e-13L));
 | |
|   CALL_SUBTEST_10(testSingular(Matrix3d(), 1e-13));
 | |
|   CALL_SUBTEST_11(testSingular(Matrix3f(), 1e-4f));
 | |
|   CALL_SUBTEST_12(testSingular(Matrix3e(), 1e-13L));
 | |
| 
 | |
|   CALL_SUBTEST_2(testLogThenExp(Matrix2d(), 1e-13));
 | |
|   CALL_SUBTEST_7(testLogThenExp(Matrix3dRowMajor(), 1e-13));
 | |
|   CALL_SUBTEST_3(testLogThenExp(Matrix4cd(), 1e-13));
 | |
|   CALL_SUBTEST_4(testLogThenExp(MatrixXd(8, 8), 2e-12));
 | |
|   CALL_SUBTEST_1(testLogThenExp(Matrix2f(), 1e-4f));
 | |
|   CALL_SUBTEST_5(testLogThenExp(Matrix3cf(), 1e-4f));
 | |
|   CALL_SUBTEST_8(testLogThenExp(Matrix4f(), 1e-4f));
 | |
|   CALL_SUBTEST_6(testLogThenExp(MatrixXf(2, 2), 1e-3f));
 | |
|   CALL_SUBTEST_9(testLogThenExp(MatrixXe(7, 7), 1e-13L));
 | |
|   CALL_SUBTEST_10(testLogThenExp(Matrix3d(), 1e-13));
 | |
|   CALL_SUBTEST_11(testLogThenExp(Matrix3f(), 1e-4f));
 | |
|   CALL_SUBTEST_12(testLogThenExp(Matrix3e(), 1e-13L));
 | |
| }
 | 
