mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 11:56:44 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			100 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			100 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of Eigen, a lightweight C++ template library
 | |
| // for linear algebra.
 | |
| //
 | |
| // Copyright (C) 2013 Christoph Hertzberg <chtz@informatik.uni-bremen.de>
 | |
| //
 | |
| // This Source Code Form is subject to the terms of the Mozilla
 | |
| // Public License v. 2.0. If a copy of the MPL was not distributed
 | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | |
| 
 | |
| #include <unsupported/Eigen/AutoDiff>
 | |
| #include "main.h"
 | |
| 
 | |
| /*
 | |
|  * In this file scalar derivations are tested for correctness.
 | |
|  * TODO add more tests!
 | |
|  */
 | |
| 
 | |
| template <typename Scalar>
 | |
| void check_atan2() {
 | |
|   typedef Matrix<Scalar, 1, 1> Deriv1;
 | |
|   typedef AutoDiffScalar<Deriv1> AD;
 | |
| 
 | |
|   AD x(internal::random<Scalar>(-3.0, 3.0), Deriv1::UnitX());
 | |
| 
 | |
|   using std::exp;
 | |
|   Scalar r = exp(internal::random<Scalar>(-10, 10));
 | |
| 
 | |
|   AD s = sin(x), c = cos(x);
 | |
|   AD res = atan2(r * s, r * c);
 | |
| 
 | |
|   VERIFY_IS_APPROX(res.value(), x.value());
 | |
|   VERIFY_IS_APPROX(res.derivatives(), x.derivatives());
 | |
| 
 | |
|   res = atan2(r * s + 0, r * c + 0);
 | |
|   VERIFY_IS_APPROX(res.value(), x.value());
 | |
|   VERIFY_IS_APPROX(res.derivatives(), x.derivatives());
 | |
| }
 | |
| 
 | |
| template <typename Scalar>
 | |
| void check_hyperbolic_functions() {
 | |
|   using std::sinh;
 | |
|   using std::cosh;
 | |
|   using std::tanh;
 | |
|   typedef Matrix<Scalar, 1, 1> Deriv1;
 | |
|   typedef AutoDiffScalar<Deriv1> AD;
 | |
|   Deriv1 p = Deriv1::Random();
 | |
|   AD val(p.x(), Deriv1::UnitX());
 | |
| 
 | |
|   Scalar cosh_px = std::cosh(p.x());
 | |
|   AD res1 = tanh(val);
 | |
|   VERIFY_IS_APPROX(res1.value(), std::tanh(p.x()));
 | |
|   VERIFY_IS_APPROX(res1.derivatives().x(), Scalar(1.0) / (cosh_px * cosh_px));
 | |
| 
 | |
|   AD res2 = sinh(val);
 | |
|   VERIFY_IS_APPROX(res2.value(), std::sinh(p.x()));
 | |
|   VERIFY_IS_APPROX(res2.derivatives().x(), cosh_px);
 | |
| 
 | |
|   AD res3 = cosh(val);
 | |
|   VERIFY_IS_APPROX(res3.value(), cosh_px);
 | |
|   VERIFY_IS_APPROX(res3.derivatives().x(), std::sinh(p.x()));
 | |
| 
 | |
|   // Check constant values.
 | |
|   const Scalar sample_point = Scalar(1) / Scalar(3);
 | |
|   val = AD(sample_point, Deriv1::UnitX());
 | |
|   res1 = tanh(val);
 | |
|   VERIFY_IS_APPROX(res1.derivatives().x(), Scalar(0.896629559604914));
 | |
| 
 | |
|   res2 = sinh(val);
 | |
|   VERIFY_IS_APPROX(res2.derivatives().x(), Scalar(1.056071867829939));
 | |
| 
 | |
|   res3 = cosh(val);
 | |
|   VERIFY_IS_APPROX(res3.derivatives().x(), Scalar(0.339540557256150));
 | |
| }
 | |
| 
 | |
| template <typename Scalar>
 | |
| void check_limits_specialization() {
 | |
|   typedef Eigen::Matrix<Scalar, 1, 1> Deriv;
 | |
|   typedef Eigen::AutoDiffScalar<Deriv> AD;
 | |
| 
 | |
|   typedef std::numeric_limits<AD> A;
 | |
|   typedef std::numeric_limits<Scalar> B;
 | |
| 
 | |
|   // workaround "unused typedef" warning:
 | |
|   VERIFY(!bool(internal::is_same<B, A>::value));
 | |
| 
 | |
| #if EIGEN_HAS_CXX11
 | |
|   VERIFY(bool(std::is_base_of<B, A>::value));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| EIGEN_DECLARE_TEST(autodiff_scalar) {
 | |
|   for (int i = 0; i < g_repeat; i++) {
 | |
|     CALL_SUBTEST_1(check_atan2<float>());
 | |
|     CALL_SUBTEST_2(check_atan2<double>());
 | |
|     CALL_SUBTEST_3(check_hyperbolic_functions<float>());
 | |
|     CALL_SUBTEST_4(check_hyperbolic_functions<double>());
 | |
|     CALL_SUBTEST_5(check_limits_specialization<double>());
 | |
|   }
 | |
| }
 | 
