mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 11:56:44 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			104 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			104 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of Eigen, a lightweight C++ template library
 | |
| // for linear algebra.
 | |
| //
 | |
| // Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org>
 | |
| 
 | |
| #include <stdio.h>
 | |
| 
 | |
| #include <unsupported/Eigen/NumericalDiff>
 | |
| #include "main.h"
 | |
| 
 | |
| // Generic functor
 | |
| template <typename _Scalar, int NX = Dynamic, int NY = Dynamic>
 | |
| struct Functor {
 | |
|   typedef _Scalar Scalar;
 | |
|   enum { InputsAtCompileTime = NX, ValuesAtCompileTime = NY };
 | |
|   typedef Matrix<Scalar, InputsAtCompileTime, 1> InputType;
 | |
|   typedef Matrix<Scalar, ValuesAtCompileTime, 1> ValueType;
 | |
|   typedef Matrix<Scalar, ValuesAtCompileTime, InputsAtCompileTime> JacobianType;
 | |
| 
 | |
|   int m_inputs, m_values;
 | |
| 
 | |
|   Functor() : m_inputs(InputsAtCompileTime), m_values(ValuesAtCompileTime) {}
 | |
|   Functor(int inputs_, int values_) : m_inputs(inputs_), m_values(values_) {}
 | |
| 
 | |
|   int inputs() const { return m_inputs; }
 | |
|   int values() const { return m_values; }
 | |
| };
 | |
| 
 | |
| struct my_functor : Functor<double> {
 | |
|   my_functor(void) : Functor<double>(3, 15) {}
 | |
|   int operator()(const VectorXd &x, VectorXd &fvec) const {
 | |
|     double tmp1, tmp2, tmp3;
 | |
|     double y[15] = {1.4e-1, 1.8e-1, 2.2e-1, 2.5e-1, 2.9e-1,
 | |
|                     3.2e-1, 3.5e-1, 3.9e-1, 3.7e-1, 5.8e-1,
 | |
|                     7.3e-1, 9.6e-1, 1.34,   2.1,    4.39};
 | |
| 
 | |
|     for (int i = 0; i < values(); i++) {
 | |
|       tmp1 = i + 1;
 | |
|       tmp2 = 16 - i - 1;
 | |
|       tmp3 = (i >= 8) ? tmp2 : tmp1;
 | |
|       fvec[i] = y[i] - (x[0] + tmp1 / (x[1] * tmp2 + x[2] * tmp3));
 | |
|     }
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   int actual_df(const VectorXd &x, MatrixXd &fjac) const {
 | |
|     double tmp1, tmp2, tmp3, tmp4;
 | |
|     for (int i = 0; i < values(); i++) {
 | |
|       tmp1 = i + 1;
 | |
|       tmp2 = 16 - i - 1;
 | |
|       tmp3 = (i >= 8) ? tmp2 : tmp1;
 | |
|       tmp4 = (x[1] * tmp2 + x[2] * tmp3);
 | |
|       tmp4 = tmp4 * tmp4;
 | |
|       fjac(i, 0) = -1;
 | |
|       fjac(i, 1) = tmp1 * tmp2 / tmp4;
 | |
|       fjac(i, 2) = tmp1 * tmp3 / tmp4;
 | |
|     }
 | |
|     return 0;
 | |
|   }
 | |
| };
 | |
| 
 | |
| void test_forward() {
 | |
|   VectorXd x(3);
 | |
|   MatrixXd jac(15, 3);
 | |
|   MatrixXd actual_jac(15, 3);
 | |
|   my_functor functor;
 | |
| 
 | |
|   x << 0.082, 1.13, 2.35;
 | |
| 
 | |
|   // real one
 | |
|   functor.actual_df(x, actual_jac);
 | |
|   //    std::cout << actual_jac << std::endl << std::endl;
 | |
| 
 | |
|   // using NumericalDiff
 | |
|   NumericalDiff<my_functor> numDiff(functor);
 | |
|   numDiff.df(x, jac);
 | |
|   //    std::cout << jac << std::endl;
 | |
| 
 | |
|   VERIFY_IS_APPROX(jac, actual_jac);
 | |
| }
 | |
| 
 | |
| void test_central() {
 | |
|   VectorXd x(3);
 | |
|   MatrixXd jac(15, 3);
 | |
|   MatrixXd actual_jac(15, 3);
 | |
|   my_functor functor;
 | |
| 
 | |
|   x << 0.082, 1.13, 2.35;
 | |
| 
 | |
|   // real one
 | |
|   functor.actual_df(x, actual_jac);
 | |
| 
 | |
|   // using NumericalDiff
 | |
|   NumericalDiff<my_functor, Central> numDiff(functor);
 | |
|   numDiff.df(x, jac);
 | |
| 
 | |
|   VERIFY_IS_APPROX(jac, actual_jac);
 | |
| }
 | |
| 
 | |
| EIGEN_DECLARE_TEST(NumericalDiff) {
 | |
|   CALL_SUBTEST(test_forward());
 | |
|   CALL_SUBTEST(test_central());
 | |
| }
 | 
