mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 11:56:44 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			258 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			258 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of Eigen, a lightweight C++ template library
 | |
| // for linear algebra.
 | |
| //
 | |
| // Copyright (C) 2009 Ilya Baran <ibaran@mit.edu>
 | |
| //
 | |
| // This Source Code Form is subject to the terms of the Mozilla
 | |
| // Public License v. 2.0. If a copy of the MPL was not distributed
 | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | |
| 
 | |
| #include <Eigen/Geometry>
 | |
| #include <Eigen/StdVector>
 | |
| #include <unsupported/Eigen/BVH>
 | |
| #include "main.h"
 | |
| 
 | |
| namespace Eigen {
 | |
| 
 | |
| template <typename Scalar, int Dim>
 | |
| AlignedBox<Scalar, Dim> bounding_box(const Matrix<Scalar, Dim, 1> &v) {
 | |
|   return AlignedBox<Scalar, Dim>(v);
 | |
| }
 | |
| }
 | |
| 
 | |
| template <int Dim>
 | |
| struct Ball {
 | |
|   EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(double, Dim)
 | |
| 
 | |
|   typedef Matrix<double, Dim, 1> VectorType;
 | |
| 
 | |
|   Ball() {}
 | |
|   Ball(const VectorType &c, double r) : center(c), radius(r) {}
 | |
| 
 | |
|   VectorType center;
 | |
|   double radius;
 | |
| };
 | |
| template <int Dim>
 | |
| AlignedBox<double, Dim> bounding_box(const Ball<Dim> &b) {
 | |
|   return AlignedBox<double, Dim>(b.center.array() - b.radius,
 | |
|                                  b.center.array() + b.radius);
 | |
| }
 | |
| 
 | |
| inline double SQR(double x) { return x * x; }
 | |
| 
 | |
| template <int Dim>
 | |
| struct BallPointStuff  // this class provides functions to be both an
 | |
|                        // intersector and a minimizer, both for a ball and a
 | |
|                        // point and for two trees
 | |
| {
 | |
|   typedef double Scalar;
 | |
|   typedef Matrix<double, Dim, 1> VectorType;
 | |
|   typedef Ball<Dim> BallType;
 | |
|   typedef AlignedBox<double, Dim> BoxType;
 | |
| 
 | |
|   BallPointStuff() : calls(0), count(0) {}
 | |
|   BallPointStuff(const VectorType &inP) : p(inP), calls(0), count(0) {}
 | |
| 
 | |
|   bool intersectVolume(const BoxType &r) {
 | |
|     ++calls;
 | |
|     return r.contains(p);
 | |
|   }
 | |
|   bool intersectObject(const BallType &b) {
 | |
|     ++calls;
 | |
|     if ((b.center - p).squaredNorm() < SQR(b.radius)) ++count;
 | |
|     return false;  // continue
 | |
|   }
 | |
| 
 | |
|   bool intersectVolumeVolume(const BoxType &r1, const BoxType &r2) {
 | |
|     ++calls;
 | |
|     return !(r1.intersection(r2)).isNull();
 | |
|   }
 | |
|   bool intersectVolumeObject(const BoxType &r, const BallType &b) {
 | |
|     ++calls;
 | |
|     return r.squaredExteriorDistance(b.center) < SQR(b.radius);
 | |
|   }
 | |
|   bool intersectObjectVolume(const BallType &b, const BoxType &r) {
 | |
|     ++calls;
 | |
|     return r.squaredExteriorDistance(b.center) < SQR(b.radius);
 | |
|   }
 | |
|   bool intersectObjectObject(const BallType &b1, const BallType &b2) {
 | |
|     ++calls;
 | |
|     if ((b1.center - b2.center).norm() < b1.radius + b2.radius) ++count;
 | |
|     return false;
 | |
|   }
 | |
|   bool intersectVolumeObject(const BoxType &r, const VectorType &v) {
 | |
|     ++calls;
 | |
|     return r.contains(v);
 | |
|   }
 | |
|   bool intersectObjectObject(const BallType &b, const VectorType &v) {
 | |
|     ++calls;
 | |
|     if ((b.center - v).squaredNorm() < SQR(b.radius)) ++count;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   double minimumOnVolume(const BoxType &r) {
 | |
|     ++calls;
 | |
|     return r.squaredExteriorDistance(p);
 | |
|   }
 | |
|   double minimumOnObject(const BallType &b) {
 | |
|     ++calls;
 | |
|     return (std::max)(0., (b.center - p).squaredNorm() - SQR(b.radius));
 | |
|   }
 | |
|   double minimumOnVolumeVolume(const BoxType &r1, const BoxType &r2) {
 | |
|     ++calls;
 | |
|     return r1.squaredExteriorDistance(r2);
 | |
|   }
 | |
|   double minimumOnVolumeObject(const BoxType &r, const BallType &b) {
 | |
|     ++calls;
 | |
|     return SQR((std::max)(0., r.exteriorDistance(b.center) - b.radius));
 | |
|   }
 | |
|   double minimumOnObjectVolume(const BallType &b, const BoxType &r) {
 | |
|     ++calls;
 | |
|     return SQR((std::max)(0., r.exteriorDistance(b.center) - b.radius));
 | |
|   }
 | |
|   double minimumOnObjectObject(const BallType &b1, const BallType &b2) {
 | |
|     ++calls;
 | |
|     return SQR(
 | |
|         (std::max)(0., (b1.center - b2.center).norm() - b1.radius - b2.radius));
 | |
|   }
 | |
|   double minimumOnVolumeObject(const BoxType &r, const VectorType &v) {
 | |
|     ++calls;
 | |
|     return r.squaredExteriorDistance(v);
 | |
|   }
 | |
|   double minimumOnObjectObject(const BallType &b, const VectorType &v) {
 | |
|     ++calls;
 | |
|     return SQR((std::max)(0., (b.center - v).norm() - b.radius));
 | |
|   }
 | |
| 
 | |
|   VectorType p;
 | |
|   int calls;
 | |
|   int count;
 | |
| };
 | |
| 
 | |
| template <int Dim>
 | |
| struct TreeTest {
 | |
|   typedef Matrix<double, Dim, 1> VectorType;
 | |
|   typedef std::vector<VectorType, aligned_allocator<VectorType> >
 | |
|       VectorTypeList;
 | |
|   typedef Ball<Dim> BallType;
 | |
|   typedef std::vector<BallType, aligned_allocator<BallType> > BallTypeList;
 | |
|   typedef AlignedBox<double, Dim> BoxType;
 | |
| 
 | |
|   void testIntersect1() {
 | |
|     BallTypeList b;
 | |
|     for (int i = 0; i < 500; ++i) {
 | |
|       b.push_back(
 | |
|           BallType(VectorType::Random(), 0.5 * internal::random(0., 1.)));
 | |
|     }
 | |
|     KdBVH<double, Dim, BallType> tree(b.begin(), b.end());
 | |
| 
 | |
|     VectorType pt = VectorType::Random();
 | |
|     BallPointStuff<Dim> i1(pt), i2(pt);
 | |
| 
 | |
|     for (int i = 0; i < (int)b.size(); ++i) i1.intersectObject(b[i]);
 | |
| 
 | |
|     BVIntersect(tree, i2);
 | |
| 
 | |
|     VERIFY(i1.count == i2.count);
 | |
|   }
 | |
| 
 | |
|   void testMinimize1() {
 | |
|     BallTypeList b;
 | |
|     for (int i = 0; i < 500; ++i) {
 | |
|       b.push_back(
 | |
|           BallType(VectorType::Random(), 0.01 * internal::random(0., 1.)));
 | |
|     }
 | |
|     KdBVH<double, Dim, BallType> tree(b.begin(), b.end());
 | |
| 
 | |
|     VectorType pt = VectorType::Random();
 | |
|     BallPointStuff<Dim> i1(pt), i2(pt);
 | |
| 
 | |
|     double m1 = (std::numeric_limits<double>::max)(), m2 = m1;
 | |
| 
 | |
|     for (int i = 0; i < (int)b.size(); ++i)
 | |
|       m1 = (std::min)(m1, i1.minimumOnObject(b[i]));
 | |
| 
 | |
|     m2 = BVMinimize(tree, i2);
 | |
| 
 | |
|     VERIFY_IS_APPROX(m1, m2);
 | |
|   }
 | |
| 
 | |
|   void testIntersect2() {
 | |
|     BallTypeList b;
 | |
|     VectorTypeList v;
 | |
| 
 | |
|     for (int i = 0; i < 50; ++i) {
 | |
|       b.push_back(
 | |
|           BallType(VectorType::Random(), 0.5 * internal::random(0., 1.)));
 | |
|       for (int j = 0; j < 3; ++j) v.push_back(VectorType::Random());
 | |
|     }
 | |
| 
 | |
|     KdBVH<double, Dim, BallType> tree(b.begin(), b.end());
 | |
|     KdBVH<double, Dim, VectorType> vTree(v.begin(), v.end());
 | |
| 
 | |
|     BallPointStuff<Dim> i1, i2;
 | |
| 
 | |
|     for (int i = 0; i < (int)b.size(); ++i)
 | |
|       for (int j = 0; j < (int)v.size(); ++j)
 | |
|         i1.intersectObjectObject(b[i], v[j]);
 | |
| 
 | |
|     BVIntersect(tree, vTree, i2);
 | |
| 
 | |
|     VERIFY(i1.count == i2.count);
 | |
|   }
 | |
| 
 | |
|   void testMinimize2() {
 | |
|     BallTypeList b;
 | |
|     VectorTypeList v;
 | |
| 
 | |
|     for (int i = 0; i < 50; ++i) {
 | |
|       b.push_back(BallType(VectorType::Random(),
 | |
|                            1e-7 + 1e-6 * internal::random(0., 1.)));
 | |
|       for (int j = 0; j < 3; ++j) v.push_back(VectorType::Random());
 | |
|     }
 | |
| 
 | |
|     KdBVH<double, Dim, BallType> tree(b.begin(), b.end());
 | |
|     KdBVH<double, Dim, VectorType> vTree(v.begin(), v.end());
 | |
| 
 | |
|     BallPointStuff<Dim> i1, i2;
 | |
| 
 | |
|     double m1 = (std::numeric_limits<double>::max)(), m2 = m1;
 | |
| 
 | |
|     for (int i = 0; i < (int)b.size(); ++i)
 | |
|       for (int j = 0; j < (int)v.size(); ++j)
 | |
|         m1 = (std::min)(m1, i1.minimumOnObjectObject(b[i], v[j]));
 | |
| 
 | |
|     m2 = BVMinimize(tree, vTree, i2);
 | |
| 
 | |
|     VERIFY_IS_APPROX(m1, m2);
 | |
|   }
 | |
| };
 | |
| 
 | |
| EIGEN_DECLARE_TEST(BVH) {
 | |
|   for (int i = 0; i < g_repeat; i++) {
 | |
| #ifdef EIGEN_TEST_PART_1
 | |
|     TreeTest<2> test2;
 | |
|     CALL_SUBTEST(test2.testIntersect1());
 | |
|     CALL_SUBTEST(test2.testMinimize1());
 | |
|     CALL_SUBTEST(test2.testIntersect2());
 | |
|     CALL_SUBTEST(test2.testMinimize2());
 | |
| #endif
 | |
| 
 | |
| #ifdef EIGEN_TEST_PART_2
 | |
|     TreeTest<3> test3;
 | |
|     CALL_SUBTEST(test3.testIntersect1());
 | |
|     CALL_SUBTEST(test3.testMinimize1());
 | |
|     CALL_SUBTEST(test3.testIntersect2());
 | |
|     CALL_SUBTEST(test3.testMinimize2());
 | |
| #endif
 | |
| 
 | |
| #ifdef EIGEN_TEST_PART_3
 | |
|     TreeTest<4> test4;
 | |
|     CALL_SUBTEST(test4.testIntersect1());
 | |
|     CALL_SUBTEST(test4.testMinimize1());
 | |
|     CALL_SUBTEST(test4.testIntersect2());
 | |
|     CALL_SUBTEST(test4.testMinimize2());
 | |
| #endif
 | |
|   }
 | |
| }
 | 
