mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 03:46:40 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			227 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			227 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| // A simple quickref for Eigen. Add anything that's missing.
 | |
| // Main author: Keir Mierle
 | |
| 
 | |
| #include <Eigen/Dense>
 | |
| 
 | |
| Matrix<double, 3, 3> A;               // Fixed rows and cols. Same as Matrix3d.
 | |
| Matrix<double, 3, Dynamic> B;         // Fixed rows, dynamic cols.
 | |
| Matrix<double, Dynamic, Dynamic> C;   // Full dynamic. Same as MatrixXd.
 | |
| Matrix<double, 3, 3, RowMajor> E;     // Row major; default is column-major.
 | |
| Matrix3f P, Q, R;                     // 3x3 float matrix.
 | |
| Vector3f x, y, z;                     // 3x1 float matrix.
 | |
| RowVector3f a, b, c;                  // 1x3 float matrix.
 | |
| VectorXd v;                           // Dynamic column vector of doubles
 | |
| double s;
 | |
| 
 | |
| // Basic usage
 | |
| // Eigen          // Matlab           // comments
 | |
| x.size()          // length(x)        // vector size
 | |
| C.rows()          // size(C,1)        // number of rows
 | |
| C.cols()          // size(C,2)        // number of columns
 | |
| x(i)              // x(i+1)           // Matlab is 1-based
 | |
| C(i,j)            // C(i+1,j+1)       //
 | |
| 
 | |
| A.resize(4, 4);   // Runtime error if assertions are on.
 | |
| B.resize(4, 9);   // Runtime error if assertions are on.
 | |
| A.resize(3, 3);   // Ok; size didn't change.
 | |
| B.resize(3, 9);   // Ok; only dynamic cols changed.
 | |
| 
 | |
| A << 1, 2, 3,     // Initialize A. The elements can also be
 | |
|      4, 5, 6,     // matrices, which are stacked along cols
 | |
|      7, 8, 9;     // and then the rows are stacked.
 | |
| B << A, A, A;     // B is three horizontally stacked A's.
 | |
| A.fill(10);       // Fill A with all 10's.
 | |
| 
 | |
| // Eigen                                    // Matlab
 | |
| MatrixXd::Identity(rows,cols)               // eye(rows,cols)
 | |
| C.setIdentity(rows,cols)                    // C = eye(rows,cols)
 | |
| MatrixXd::Zero(rows,cols)                   // zeros(rows,cols)
 | |
| C.setZero(rows,cols)                        // C = zeros(rows,cols)
 | |
| MatrixXd::Ones(rows,cols)                   // ones(rows,cols)
 | |
| C.setOnes(rows,cols)                        // C = ones(rows,cols)
 | |
| MatrixXd::Random(rows,cols)                 // rand(rows,cols)*2-1            // MatrixXd::Random returns uniform random numbers in (-1, 1).
 | |
| C.setRandom(rows,cols)                      // C = rand(rows,cols)*2-1
 | |
| VectorXd::LinSpaced(size,low,high)          // linspace(low,high,size)'
 | |
| v.setLinSpaced(size,low,high)               // v = linspace(low,high,size)'
 | |
| VectorXi::LinSpaced(((hi-low)/step)+1,      // low:step:hi
 | |
|                     low,low+step*(size-1))  //
 | |
| 
 | |
| 
 | |
| // Matrix slicing and blocks. All expressions listed here are read/write.
 | |
| // Templated size versions are faster. Note that Matlab is 1-based (a size N
 | |
| // vector is x(1)...x(N)).
 | |
| /******************************************************************************/
 | |
| /*                  PLEASE HELP US IMPROVING THIS SECTION                     */
 | |
| /* Eigen 3.4 supports a much improved API for sub-matrices, including,        */
 | |
| /* slicing and indexing from arrays:                                          */
 | |
| /* http://eigen.tuxfamily.org/dox-devel/group__TutorialSlicingIndexing.html   */
 | |
| /******************************************************************************/
 | |
| // Eigen                           // Matlab
 | |
| x.head(n)                          // x(1:n)
 | |
| x.head<n>()                        // x(1:n)
 | |
| x.tail(n)                          // x(end - n + 1: end)
 | |
| x.tail<n>()                        // x(end - n + 1: end)
 | |
| x.segment(i, n)                    // x(i+1 : i+n)
 | |
| x.segment<n>(i)                    // x(i+1 : i+n)
 | |
| P.block(i, j, rows, cols)          // P(i+1 : i+rows, j+1 : j+cols)
 | |
| P.block<rows, cols>(i, j)          // P(i+1 : i+rows, j+1 : j+cols)
 | |
| P.row(i)                           // P(i+1, :)
 | |
| P.col(j)                           // P(:, j+1)
 | |
| P.leftCols<cols>()                 // P(:, 1:cols)
 | |
| P.leftCols(cols)                   // P(:, 1:cols)
 | |
| P.middleCols<cols>(j)              // P(:, j+1:j+cols)
 | |
| P.middleCols(j, cols)              // P(:, j+1:j+cols)
 | |
| P.rightCols<cols>()                // P(:, end-cols+1:end)
 | |
| P.rightCols(cols)                  // P(:, end-cols+1:end)
 | |
| P.topRows<rows>()                  // P(1:rows, :)
 | |
| P.topRows(rows)                    // P(1:rows, :)
 | |
| P.middleRows<rows>(i)              // P(i+1:i+rows, :)
 | |
| P.middleRows(i, rows)              // P(i+1:i+rows, :)
 | |
| P.bottomRows<rows>()               // P(end-rows+1:end, :)
 | |
| P.bottomRows(rows)                 // P(end-rows+1:end, :)
 | |
| P.topLeftCorner(rows, cols)        // P(1:rows, 1:cols)
 | |
| P.topRightCorner(rows, cols)       // P(1:rows, end-cols+1:end)
 | |
| P.bottomLeftCorner(rows, cols)     // P(end-rows+1:end, 1:cols)
 | |
| P.bottomRightCorner(rows, cols)    // P(end-rows+1:end, end-cols+1:end)
 | |
| P.topLeftCorner<rows,cols>()       // P(1:rows, 1:cols)
 | |
| P.topRightCorner<rows,cols>()      // P(1:rows, end-cols+1:end)
 | |
| P.bottomLeftCorner<rows,cols>()    // P(end-rows+1:end, 1:cols)
 | |
| P.bottomRightCorner<rows,cols>()   // P(end-rows+1:end, end-cols+1:end)
 | |
| 
 | |
| // Of particular note is Eigen's swap function which is highly optimized.
 | |
| // Eigen                           // Matlab
 | |
| R.row(i) = P.col(j);               // R(i, :) = P(:, j)
 | |
| R.col(j1).swap(mat1.col(j2));      // R(:, [j1 j2]) = R(:, [j2, j1])
 | |
| 
 | |
| // Views, transpose, etc;
 | |
| /******************************************************************************/
 | |
| /*                  PLEASE HELP US IMPROVING THIS SECTION                     */
 | |
| /* Eigen 3.4 supports a new API for reshaping:                                */
 | |
| /* http://eigen.tuxfamily.org/dox-devel/group__TutorialReshape.html           */
 | |
| /******************************************************************************/
 | |
| // Eigen                           // Matlab
 | |
| R.adjoint()                        // R'
 | |
| R.transpose()                      // R.' or conj(R')       // Read-write
 | |
| R.diagonal()                       // diag(R)               // Read-write
 | |
| x.asDiagonal()                     // diag(x)
 | |
| R.transpose().colwise().reverse()  // rot90(R)              // Read-write
 | |
| R.rowwise().reverse()              // fliplr(R)
 | |
| R.colwise().reverse()              // flipud(R)
 | |
| R.replicate(i,j)                   // repmat(P,i,j)
 | |
| 
 | |
| 
 | |
| // All the same as Matlab, but matlab doesn't have *= style operators.
 | |
| // Matrix-vector.  Matrix-matrix.   Matrix-scalar.
 | |
| y  = M*x;          R  = P*Q;        R  = P*s;
 | |
| a  = b*M;          R  = P - Q;      R  = s*P;
 | |
| a *= M;            R  = P + Q;      R  = P/s;
 | |
|                    R *= Q;          R  = s*P;
 | |
|                    R += Q;          R *= s;
 | |
|                    R -= Q;          R /= s;
 | |
| 
 | |
| // Vectorized operations on each element independently
 | |
| // Eigen                       // Matlab
 | |
| R = P.cwiseProduct(Q);         // R = P .* Q
 | |
| R = P.array() * s.array();     // R = P .* s
 | |
| R = P.cwiseQuotient(Q);        // R = P ./ Q
 | |
| R = P.array() / Q.array();     // R = P ./ Q
 | |
| R = P.array() + s.array();     // R = P + s
 | |
| R = P.array() - s.array();     // R = P - s
 | |
| R.array() += s;                // R = R + s
 | |
| R.array() -= s;                // R = R - s
 | |
| R.array() < Q.array();         // R < Q
 | |
| R.array() <= Q.array();        // R <= Q
 | |
| R.cwiseInverse();              // 1 ./ P
 | |
| R.array().inverse();           // 1 ./ P
 | |
| R.array().sin()                // sin(P)
 | |
| R.array().cos()                // cos(P)
 | |
| R.array().pow(s)               // P .^ s
 | |
| R.array().square()             // P .^ 2
 | |
| R.array().cube()               // P .^ 3
 | |
| R.cwiseSqrt()                  // sqrt(P)
 | |
| R.array().sqrt()               // sqrt(P)
 | |
| R.array().exp()                // exp(P)
 | |
| R.array().log()                // log(P)
 | |
| R.cwiseMax(P)                  // max(R, P)
 | |
| R.array().max(P.array())       // max(R, P)
 | |
| R.cwiseMin(P)                  // min(R, P)
 | |
| R.array().min(P.array())       // min(R, P)
 | |
| R.cwiseAbs()                   // abs(P)
 | |
| R.array().abs()                // abs(P)
 | |
| R.cwiseAbs2()                  // abs(P.^2)
 | |
| R.array().abs2()               // abs(P.^2)
 | |
| (R.array() < s).select(P,Q );  // (R < s ? P : Q)
 | |
| R = (Q.array()==0).select(P,R) // R(Q==0) = P(Q==0)
 | |
| R = P.unaryExpr(ptr_fun(func)) // R = arrayfun(func, P)   // with: scalar func(const scalar &x);
 | |
| 
 | |
| 
 | |
| // Reductions.
 | |
| int r, c;
 | |
| // Eigen                  // Matlab
 | |
| R.minCoeff()              // min(R(:))
 | |
| R.maxCoeff()              // max(R(:))
 | |
| s = R.minCoeff(&r, &c)    // [s, i] = min(R(:)); [r, c] = ind2sub(size(R), i);
 | |
| s = R.maxCoeff(&r, &c)    // [s, i] = max(R(:)); [r, c] = ind2sub(size(R), i);
 | |
| R.sum()                   // sum(R(:))
 | |
| R.colwise().sum()         // sum(R)
 | |
| R.rowwise().sum()         // sum(R, 2) or sum(R')'
 | |
| R.prod()                  // prod(R(:))
 | |
| R.colwise().prod()        // prod(R)
 | |
| R.rowwise().prod()        // prod(R, 2) or prod(R')'
 | |
| R.trace()                 // trace(R)
 | |
| R.all()                   // all(R(:))
 | |
| R.colwise().all()         // all(R)
 | |
| R.rowwise().all()         // all(R, 2)
 | |
| R.any()                   // any(R(:))
 | |
| R.colwise().any()         // any(R)
 | |
| R.rowwise().any()         // any(R, 2)
 | |
| 
 | |
| // Dot products, norms, etc.
 | |
| // Eigen                  // Matlab
 | |
| x.norm()                  // norm(x).    Note that norm(R) doesn't work in Eigen.
 | |
| x.squaredNorm()           // dot(x, x)   Note the equivalence is not true for complex
 | |
| x.dot(y)                  // dot(x, y)
 | |
| x.cross(y)                // cross(x, y) Requires #include <Eigen/Geometry>
 | |
| 
 | |
| //// Type conversion
 | |
| // Eigen                  // Matlab
 | |
| A.cast<double>();         // double(A)
 | |
| A.cast<float>();          // single(A)
 | |
| A.cast<int>();            // int32(A)
 | |
| A.real();                 // real(A)
 | |
| A.imag();                 // imag(A)
 | |
| // if the original type equals destination type, no work is done
 | |
| 
 | |
| // Note that for most operations Eigen requires all operands to have the same type:
 | |
| MatrixXf F = MatrixXf::Zero(3,3);
 | |
| A += F;                // illegal in Eigen. In Matlab A = A+F is allowed
 | |
| A += F.cast<double>(); // F converted to double and then added (generally, conversion happens on-the-fly)
 | |
| 
 | |
| // Eigen can map existing memory into Eigen matrices.
 | |
| float array[3];
 | |
| Vector3f::Map(array).fill(10);            // create a temporary Map over array and sets entries to 10
 | |
| int data[4] = {1, 2, 3, 4};
 | |
| Matrix2i mat2x2(data);                    // copies data into mat2x2
 | |
| Matrix2i::Map(data) = 2*mat2x2;           // overwrite elements of data with 2*mat2x2
 | |
| MatrixXi::Map(data, 2, 2) += mat2x2;      // adds mat2x2 to elements of data (alternative syntax if size is not know at compile time)
 | |
| 
 | |
| // Solve Ax = b. Result stored in x. Matlab: x = A \ b.
 | |
| x = A.ldlt().solve(b));  // A sym. p.s.d.    #include <Eigen/Cholesky>
 | |
| x = A.llt() .solve(b));  // A sym. p.d.      #include <Eigen/Cholesky>
 | |
| x = A.lu()  .solve(b));  // Stable and fast. #include <Eigen/LU>
 | |
| x = A.qr()  .solve(b));  // No pivoting.     #include <Eigen/QR>
 | |
| x = A.svd() .solve(b));  // Stable, slowest. #include <Eigen/SVD>
 | |
| // .ldlt() -> .matrixL() and .matrixD()
 | |
| // .llt()  -> .matrixL()
 | |
| // .lu()   -> .matrixL() and .matrixU()
 | |
| // .qr()   -> .matrixQ() and .matrixR()
 | |
| // .svd()  -> .matrixU(), .singularValues(), and .matrixV()
 | |
| 
 | |
| // Eigenvalue problems
 | |
| // Eigen                          // Matlab
 | |
| A.eigenvalues();                  // eig(A);
 | |
| EigenSolver<Matrix3d> eig(A);     // [vec val] = eig(A)
 | |
| eig.eigenvalues();                // diag(val)
 | |
| eig.eigenvectors();               // vec
 | |
| // For self-adjoint matrices use SelfAdjointEigenSolver<>
 | 
