Files
FastDeploy/fastdeploy/vision/utils/sort_det_res.cc
WJJ1995 d3845eb4e1 [Benchmark]Compare diff for OCR (#1415)
* avoid mem copy for cpp benchmark

* set CMAKE_BUILD_TYPE to Release

* Add SegmentationDiff

* change pointer to reference

* fixed bug

* cast uint8 to int32

* Add diff compare for OCR

* Add diff compare for OCR

* rm ppocr pipeline

* Add yolov5 diff compare

* Add yolov5 diff compare

* deal with comments

* deal with comments

* fixed bug

* fixed bug
2023-02-23 18:57:39 +08:00

188 lines
5.6 KiB
C++
Executable File

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/utils/utils.h"
namespace fastdeploy {
namespace vision {
namespace utils {
void Merge(DetectionResult* result, size_t low, size_t mid, size_t high) {
std::vector<std::array<float, 4>>& boxes = result->boxes;
std::vector<float>& scores = result->scores;
std::vector<int32_t>& label_ids = result->label_ids;
std::vector<std::array<float, 4>> temp_boxes(boxes);
std::vector<float> temp_scores(scores);
std::vector<int32_t> temp_label_ids(label_ids);
size_t i = low;
size_t j = mid + 1;
size_t k = i;
// TODO(qiuyanjun): add masks process
for (; i <= mid && j <= high; k++) {
if (temp_scores[i] >= temp_scores[j]) {
scores[k] = temp_scores[i];
label_ids[k] = temp_label_ids[i];
boxes[k] = temp_boxes[i];
i++;
} else {
scores[k] = temp_scores[j];
label_ids[k] = temp_label_ids[j];
boxes[k] = temp_boxes[j];
j++;
}
}
while (i <= mid) {
scores[k] = temp_scores[i];
label_ids[k] = temp_label_ids[i];
boxes[k] = temp_boxes[i];
k++;
i++;
}
while (j <= high) {
scores[k] = temp_scores[j];
label_ids[k] = temp_label_ids[j];
boxes[k] = temp_boxes[j];
k++;
j++;
}
}
void MergeSort(DetectionResult* result, size_t low, size_t high) {
if (low < high) {
size_t mid = (high - low) / 2 + low;
MergeSort(result, low, mid);
MergeSort(result, mid + 1, high);
Merge(result, low, mid, high);
}
}
void SortDetectionResult(DetectionResult* result) {
size_t low = 0;
size_t high = result->scores.size();
if (high == 0) {
return;
}
high = high - 1;
MergeSort(result, low, high);
}
template <typename T>
bool LexSortByXYCompare(const std::array<T, 4>& box_a,
const std::array<T, 4>& box_b) {
// WARN: The status shoule be false if (a==b).
// https://blog.csdn.net/xxxwrq/article/details/83080640
auto is_equal = [](const T& a, const T& b) -> bool {
return std::abs(a - b) < 1e-6f;
};
const T& x0_a = box_a[0];
const T& y0_a = box_a[1];
const T& x0_b = box_b[0];
const T& y0_b = box_b[1];
if (is_equal(x0_a, x0_b)) {
return is_equal(y0_a, y0_b) ? false : y0_a > y0_b;
}
return x0_a > x0_b;
}
// Only for int dtype
template <>
bool LexSortByXYCompare(const std::array<int, 4>& box_a,
const std::array<int, 4>& box_b) {
const int& x0_a = box_a[0];
const int& y0_a = box_a[1];
const int& x0_b = box_b[0];
const int& y0_b = box_b[1];
if (x0_a == x0_b) {
return y0_a == y0_b ? false : y0_a > y0_b;
}
return x0_a > x0_b;
}
void ReorderDetectionResultByIndices(DetectionResult* result,
const std::vector<size_t>& indices) {
// reorder boxes, scores, label_ids, masks
DetectionResult backup = (*result);
const bool contain_masks = backup.contain_masks;
const int boxes_num = backup.boxes.size();
result->Clear();
result->Resize(boxes_num);
// boxes, scores, labels_ids
for (int i = 0; i < boxes_num; ++i) {
result->boxes[i] = backup.boxes[indices[i]];
result->scores[i] = backup.scores[indices[i]];
result->label_ids[i] = backup.label_ids[indices[i]];
}
if (contain_masks) {
result->contain_masks = true;
for (int i = 0; i < boxes_num; ++i) {
const auto& shape = backup.masks[indices[i]].shape;
const int mask_numel = shape[0] * shape[1];
result->masks[i].shape = shape;
result->masks[i].Resize(mask_numel);
std::memcpy(result->masks[i].Data(), backup.masks[indices[i]].Data(),
mask_numel * sizeof(uint8_t));
}
}
}
void LexSortDetectionResultByXY(DetectionResult* result) {
if (result->boxes.empty()) {
return;
}
std::vector<size_t> indices;
indices.resize(result->boxes.size());
for (size_t i = 0; i < result->boxes.size(); ++i) {
indices[i] = i;
}
// lex sort by x(w) then y(h)
auto& boxes = result->boxes;
std::sort(indices.begin(), indices.end(), [&boxes](size_t a, size_t b) {
return LexSortByXYCompare(boxes[a], boxes[b]);
});
ReorderDetectionResultByIndices(result, indices);
}
void LexSortOCRDetResultByXY(std::vector<std::array<int, 8>>* result) {
if (result->empty()) {
return;
}
std::vector<size_t> indices;
indices.resize(result->size());
std::vector<std::array<int, 4>> boxes;
boxes.resize(result->size());
for (size_t i = 0; i < result->size(); ++i) {
indices[i] = i;
// 4 points to 2 points for LexSort
boxes[i] = {(*result)[i][0], (*result)[i][1], (*result)[i][6],
(*result)[i][7]};
}
// lex sort by x(w) then y(h)
std::sort(indices.begin(), indices.end(), [&boxes](size_t a, size_t b) {
return LexSortByXYCompare(boxes[a], boxes[b]);
});
// reorder boxes
std::vector<std::array<int, 8>> backup = (*result);
const int boxes_num = backup.size();
result->clear();
result->resize(boxes_num);
// boxes
for (int i = 0; i < boxes_num; ++i) {
(*result)[i] = backup[indices[i]];
}
}
} // namespace utils
} // namespace vision
} // namespace fastdeploy