Files
FastDeploy/fastdeploy/vision/utils/face_align.cc
Zheng-Bicheng 831e19a496 [Bug Fix] 修复FaceAlign输出图片数量翻倍的问题 (#1156)
* 更新5点人脸对齐的代码

* 更新代码格式

* 解决comment

* update example

* 更新注释

* 修复bug

* 修复bug

Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
2023-01-17 09:54:44 +08:00

153 lines
5.1 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// reference:
// https://github.com/deepinsight/insightface/blob/master/recognition/_tools_/cpp_align/face_align.h
#include "fastdeploy/vision/utils/utils.h"
namespace fastdeploy {
namespace vision {
namespace utils {
cv::Mat MeanAxis0(const cv::Mat& src) {
int num = src.rows;
int dim = src.cols;
cv::Mat output(1, dim, CV_32F);
for (int i = 0; i < dim; i++) {
float sum = 0;
for (int j = 0; j < num; j++) {
sum += src.at<float>(j, i);
}
output.at<float>(0, i) = sum / num;
}
return output;
}
cv::Mat ElementwiseMinus(const cv::Mat& A, const cv::Mat& B) {
cv::Mat output(A.rows, A.cols, A.type());
assert(B.cols == A.cols);
if (B.cols == A.cols) {
for (int i = 0; i < A.rows; i++) {
for (int j = 0; j < B.cols; j++) {
output.at<float>(i, j) = A.at<float>(i, j) - B.at<float>(0, j);
}
}
}
return output;
}
cv::Mat VarAxis0(const cv::Mat& src) {
cv::Mat temp_ = ElementwiseMinus(src, MeanAxis0(src));
cv::multiply(temp_, temp_, temp_);
return MeanAxis0(temp_);
}
int MatrixRank(cv::Mat M) {
cv::Mat w, u, vt;
cv::SVD::compute(M, w, u, vt);
cv::Mat1b non_zero_singular_values = w > 0.0001;
int rank = countNonZero(non_zero_singular_values);
return rank;
}
cv::Mat SimilarTransform(cv::Mat& dst, cv::Mat& src) {
int num = dst.rows;
int dim = dst.cols;
cv::Mat src_mean = MeanAxis0(dst);
cv::Mat dst_mean = MeanAxis0(src);
cv::Mat src_demean = ElementwiseMinus(dst, src_mean);
cv::Mat dst_demean = ElementwiseMinus(src, dst_mean);
cv::Mat A = (dst_demean.t() * src_demean) / static_cast<float>(num);
cv::Mat d(dim, 1, CV_32F);
d.setTo(1.0f);
if (cv::determinant(A) < 0) {
d.at<float>(dim - 1, 0) = -1;
}
cv::Mat T = cv::Mat::eye(dim + 1, dim + 1, CV_32F);
cv::Mat U, S, V;
cv::SVD::compute(A, S, U, V);
int rank = MatrixRank(A);
if (rank == 0) {
assert(rank == 0);
} else if (rank == dim - 1) {
if (cv::determinant(U) * cv::determinant(V) > 0) {
T.rowRange(0, dim).colRange(0, dim) = U * V;
} else {
int s = d.at<float>(dim - 1, 0) = -1;
d.at<float>(dim - 1, 0) = -1;
T.rowRange(0, dim).colRange(0, dim) = U * V;
cv::Mat diag_ = cv::Mat::diag(d);
cv::Mat twp = diag_ * V; // np.dot(np.diag(d), V.T)
cv::Mat B = cv::Mat::zeros(3, 3, CV_8UC1);
cv::Mat C = B.diag(0);
T.rowRange(0, dim).colRange(0, dim) = U * twp;
d.at<float>(dim - 1, 0) = s;
}
} else {
cv::Mat diag_ = cv::Mat::diag(d);
cv::Mat twp = diag_ * V.t(); // np.dot(np.diag(d), V.T)
cv::Mat res = U * twp; // U
T.rowRange(0, dim).colRange(0, dim) = -U.t() * twp;
}
cv::Mat var_ = VarAxis0(src_demean);
float val = cv::sum(var_).val[0];
cv::Mat res;
cv::multiply(d, S, res);
float scale = 1.0 / val * cv::sum(res).val[0];
T.rowRange(0, dim).colRange(0, dim) =
-T.rowRange(0, dim).colRange(0, dim).t();
cv::Mat temp1 = T.rowRange(0, dim).colRange(0, dim); // T[:dim, :dim]
cv::Mat temp2 = src_mean.t(); // src_mean.T
cv::Mat temp3 = temp1 * temp2; // np.dot(T[:dim, :dim], src_mean.T)
cv::Mat temp4 = scale * temp3;
T.rowRange(0, dim).colRange(dim, dim + 1) = -(temp4 - dst_mean.t());
T.rowRange(0, dim).colRange(0, dim) *= scale;
return T;
}
std::vector<cv::Mat> AlignFaceWithFivePoints(
cv::Mat& image, FaceDetectionResult& result,
std::vector<std::array<float, 2>> std_landmarks,
std::array<int, 2> output_size) {
FDASSERT(std_landmarks.size() == 5, "The landmarks.size() must be 5.")
FDASSERT(!image.empty(), "The input_image can't be empty.")
std::vector<cv::Mat> output_images;
output_images.reserve(result.scores.size());
if (result.boxes.empty()) {
FDWARNING << "The result is empty." << std::endl;
return output_images;
}
cv::Mat src(5, 2, CV_32FC1, std_landmarks.data());
for (int i = 0; i < result.landmarks.size(); i += 5) {
cv::Mat dst(5, 2, CV_32FC1, result.landmarks.data() + i);
cv::Mat m = SimilarTransform(dst, src);
cv::Mat map_matrix;
cv::Rect map_matrix_r = cv::Rect(0, 0, 3, 2);
cv::Mat(m, map_matrix_r).copyTo(map_matrix);
cv::Mat cropped_image_aligned;
cv::warpAffine(image, cropped_image_aligned, map_matrix,
{output_size[0], output_size[1]});
if (cropped_image_aligned.empty()) {
FDWARNING << "croppedImageAligned is empty." << std::endl;
}
output_images.emplace_back(cropped_image_aligned);
}
return output_images;
}
} // namespace utils
} // namespace vision
} // namespace fastdeploy