Files
FastDeploy/fastdeploy/vision/utils/cosine_similarity.cc
2022-09-23 11:02:00 +08:00

49 lines
1.6 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/utils/utils.h"
namespace fastdeploy {
namespace vision {
namespace utils {
float CosineSimilarity(const std::vector<float>& a, const std::vector<float>& b,
bool normalized) {
FDASSERT((a.size() == b.size()) && (a.size() != 0),
"The size of a and b must be equal and >= 1.");
size_t num_val = a.size();
if (normalized) {
float mul_a = 0.f, mul_b = 0.f, mul_ab = 0.f;
for (size_t i = 0; i < num_val; ++i) {
mul_a += (a[i] * a[i]);
mul_b += (b[i] * b[i]);
mul_ab += (a[i] * b[i]);
}
return (mul_ab / (std::sqrt(mul_a) * std::sqrt(mul_b)));
}
auto norm_a = L2Normalize(a);
auto norm_b = L2Normalize(b);
float mul_a = 0.f, mul_b = 0.f, mul_ab = 0.f;
for (size_t i = 0; i < num_val; ++i) {
mul_a += (norm_a[i] * norm_a[i]);
mul_b += (norm_b[i] * norm_b[i]);
mul_ab += (norm_a[i] * norm_b[i]);
}
return (mul_ab / (std::sqrt(mul_a) * std::sqrt(mul_b)));
}
} // namespace utils
} // namespace vision
} // namespace fastdeploy