Files
FastDeploy/fastdeploy/vision/ocr/ppocr/cls_postprocessor.cc
Zheng-Bicheng db5e90f285 [Model] Update PPOCR code style (#1160)
* 更新代码风格

* 更新代码风格

* 更新代码风格

* 更新代码风格
2023-01-17 19:51:06 +08:00

86 lines
3.1 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/ocr/ppocr/cls_postprocessor.h"
#include "fastdeploy/utils/perf.h"
#include "fastdeploy/vision/ocr/ppocr/utils/ocr_utils.h"
namespace fastdeploy {
namespace vision {
namespace ocr {
bool SingleBatchPostprocessor(const float* out_data, const size_t& length,
int* cls_label, float* cls_score) {
*cls_label = std::distance(&out_data[0],
std::max_element(&out_data[0], &out_data[length]));
*cls_score = float(*std::max_element(&out_data[0], &out_data[length]));
return true;
}
bool ClassifierPostprocessor::Run(const std::vector<FDTensor>& tensors,
std::vector<int32_t>* cls_labels,
std::vector<float>* cls_scores) {
size_t total_size = tensors[0].shape[0];
return Run(tensors, cls_labels, cls_scores, 0, total_size);
}
bool ClassifierPostprocessor::Run(const std::vector<FDTensor>& tensors,
std::vector<int32_t>* cls_labels,
std::vector<float>* cls_scores,
size_t start_index, size_t total_size) {
// Classifier have only 1 output tensor.
const FDTensor& tensor = tensors[0];
// For Classifier, the output tensor shape = [batch,2]
size_t batch = tensor.shape[0];
size_t length = accumulate(tensor.shape.begin() + 1, tensor.shape.end(), 1,
std::multiplies<int>());
if (batch <= 0) {
FDERROR << "The infer outputTensor.shape[0] <=0, wrong infer result."
<< std::endl;
return false;
}
if (start_index < 0 || total_size <= 0) {
FDERROR << "start_index or total_size error. Correct is: 0 <= start_index "
"< total_size"
<< std::endl;
return false;
}
if ((start_index + batch) > total_size) {
FDERROR << "start_index or total_size error. Correct is: start_index + "
"batch(outputTensor.shape[0]) <= total_size"
<< std::endl;
return false;
}
cls_labels->resize(total_size);
cls_scores->resize(total_size);
const float* tensor_data = reinterpret_cast<const float*>(tensor.Data());
for (int i_batch = 0; i_batch < batch; ++i_batch) {
SingleBatchPostprocessor(tensor_data+ i_batch * length,
length,
&cls_labels->at(i_batch + start_index),
&cls_scores->at(i_batch + start_index));
}
return true;
}
} // namespace ocr
} // namespace vision
} // namespace fastdeploy