Files
FastDeploy/fastdeploy/vision/ocr/ppocr/classifier.cc

129 lines
4.4 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/ocr/ppocr/classifier.h"
#include "fastdeploy/utils/perf.h"
#include "fastdeploy/vision/ocr/ppocr/utils/ocr_utils.h"
namespace fastdeploy {
namespace vision {
namespace ocr {
Classifier::Classifier() {}
Classifier::Classifier(const std::string& model_file,
const std::string& params_file,
const RuntimeOption& custom_option,
const ModelFormat& model_format) {
if (model_format == ModelFormat::ONNX) {
valid_cpu_backends = {Backend::ORT, Backend::OPENVINO};
valid_gpu_backends = {Backend::ORT, Backend::TRT};
} else {
valid_cpu_backends = {Backend::PDINFER, Backend::ORT, Backend::OPENVINO,
Backend::LITE};
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
valid_kunlunxin_backends = {Backend::LITE};
valid_ascend_backends = {Backend::LITE};
valid_sophgonpu_backends = {Backend::SOPHGOTPU};
valid_rknpu_backends = {Backend::RKNPU2};
}
runtime_option = custom_option;
runtime_option.model_format = model_format;
runtime_option.model_file = model_file;
runtime_option.params_file = params_file;
initialized = Initialize();
}
bool Classifier::Initialize() {
if (!InitRuntime()) {
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
return false;
}
return true;
}
std::unique_ptr<Classifier> Classifier::Clone() const {
std::unique_ptr<Classifier> clone_model =
utils::make_unique<Classifier>(Classifier(*this));
clone_model->SetRuntime(clone_model->CloneRuntime());
return clone_model;
}
bool Classifier::Predict(const cv::Mat& img, int32_t* cls_label,
float* cls_score) {
std::vector<int32_t> cls_labels(1);
std::vector<float> cls_scores(1);
bool success = BatchPredict({img}, &cls_labels, &cls_scores);
if (!success) {
return success;
}
*cls_label = cls_labels[0];
*cls_score = cls_scores[0];
return true;
}
bool Classifier::Predict(const cv::Mat& img, vision::OCRResult* ocr_result) {
ocr_result->cls_labels.resize(1);
ocr_result->cls_scores.resize(1);
if (!Predict(img, &(ocr_result->cls_labels[0]),
&(ocr_result->cls_scores[0]))) {
return false;
}
return true;
}
bool Classifier::BatchPredict(const std::vector<cv::Mat>& images,
vision::OCRResult* ocr_result) {
return BatchPredict(images, &(ocr_result->cls_labels),
&(ocr_result->cls_scores));
}
bool Classifier::BatchPredict(const std::vector<cv::Mat>& images,
std::vector<int32_t>* cls_labels,
std::vector<float>* cls_scores) {
return BatchPredict(images, cls_labels, cls_scores, 0, images.size());
}
bool Classifier::BatchPredict(const std::vector<cv::Mat>& images,
std::vector<int32_t>* cls_labels,
std::vector<float>* cls_scores,
size_t start_index, size_t end_index) {
size_t total_size = images.size();
std::vector<FDMat> fd_images = WrapMat(images);
if (!preprocessor_.Run(&fd_images, &reused_input_tensors_, start_index,
end_index)) {
FDERROR << "Failed to preprocess the input image." << std::endl;
return false;
}
reused_input_tensors_[0].name = InputInfoOfRuntime(0).name;
if (!Infer(reused_input_tensors_, &reused_output_tensors_)) {
FDERROR << "Failed to inference by runtime." << std::endl;
return false;
}
if (!postprocessor_.Run(reused_output_tensors_, cls_labels, cls_scores,
start_index, total_size)) {
FDERROR << "Failed to postprocess the inference cls_results by runtime."
<< std::endl;
return false;
}
return true;
}
} // namespace ocr
} // namespace vision
} // namespace fastdeploy