Files
FastDeploy/fastdeploy/vision/detection/contrib/yolov7/yolov7.h
WJJ1995 8dd3e64227 [Model] Refactor YOLOv7 module (#611)
* add paddle_trt in benchmark

* update benchmark in device

* update benchmark

* update result doc

* fixed for CI

* update python api_docs

* update index.rst

* add runtime cpp examples

* deal with comments

* Update infer_paddle_tensorrt.py

* Add runtime quick start

* deal with comments

* fixed reused_input_tensors&&reused_output_tensors

* fixed docs

* fixed headpose typo

* fixed typo

* refactor yolov5

* update model infer

* refactor pybind for yolov5

* rm origin yolov5

* fixed bugs

* rm cuda preprocess

* fixed bugs

* fixed bugs

* fixed bug

* fixed bug

* fix pybind

* rm useless code

* add convert_and_permute

* fixed bugs

* fixed im_info for bs_predict

* fixed bug

* add bs_predict for yolov5

* Add runtime test and batch eval

* deal with comments

* fixed bug

* update testcase

* fixed batch eval bug

* fixed preprocess bug

* refactor yolov7

* add yolov7 testcase

* rm resize_after_load and add is_scale_up

* fixed bug

* set multi_label true

Co-authored-by: Jason <928090362@qq.com>
2022-11-18 10:52:02 +08:00

89 lines
3.7 KiB
C++
Executable File

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. //NOLINT
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/fastdeploy_model.h"
#include "fastdeploy/vision/detection/contrib/yolov7/preprocessor.h"
#include "fastdeploy/vision/detection/contrib/yolov7/postprocessor.h"
namespace fastdeploy {
namespace vision {
namespace detection {
/*! @brief YOLOv7 model object used when to load a YOLOv7 model exported by YOLOv7.
*/
class FASTDEPLOY_DECL YOLOv7 : public FastDeployModel {
public:
/** \brief Set path of model file and the configuration of runtime.
*
* \param[in] model_file Path of model file, e.g ./yolov7.onnx
* \param[in] params_file Path of parameter file, e.g ppyoloe/model.pdiparams, if the model format is ONNX, this parameter will be ignored
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in "valid_cpu_backends"
* \param[in] model_format Model format of the loaded model, default is ONNX format
*/
YOLOv7(const std::string& model_file, const std::string& params_file = "",
const RuntimeOption& custom_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::ONNX);
std::string ModelName() const { return "yolov7"; }
/** \brief DEPRECATED Predict the detection result for an input image, remove at 1.0 version
*
* \param[in] im The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
* \param[in] result The output detection result will be writen to this structure
* \param[in] conf_threshold confidence threashold for postprocessing, default is 0.25
* \param[in] nms_threshold iou threashold for NMS, default is 0.5
* \return true if the prediction successed, otherwise false
*/
virtual bool Predict(cv::Mat* im, DetectionResult* result,
float conf_threshold = 0.25,
float nms_threshold = 0.5);
/** \brief Predict the detection result for an input image
*
* \param[in] img The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
* \param[in] result The output detection result will be writen to this structure
* \return true if the prediction successed, otherwise false
*/
virtual bool Predict(const cv::Mat& img, DetectionResult* result);
/** \brief Predict the detection results for a batch of input images
*
* \param[in] imgs, The input image list, each element comes from cv::imread()
* \param[in] results The output detection result list
* \return true if the prediction successed, otherwise false
*/
virtual bool BatchPredict(const std::vector<cv::Mat>& imgs,
std::vector<DetectionResult>* results);
/// Get preprocessor reference of YOLOv7
virtual YOLOv7Preprocessor& GetPreprocessor() {
return preprocessor_;
}
/// Get postprocessor reference of YOLOv7
virtual YOLOv7Postprocessor& GetPostprocessor() {
return postprocessor_;
}
protected:
bool Initialize();
YOLOv7Preprocessor preprocessor_;
YOLOv7Postprocessor postprocessor_;
};
} // namespace detection
} // namespace vision
} // namespace fastdeploy