Files
FastDeploy/fastdeploy/vision/detection/contrib/yolov5lite.cc
WJJ1995 d3845eb4e1 [Benchmark]Compare diff for OCR (#1415)
* avoid mem copy for cpp benchmark

* set CMAKE_BUILD_TYPE to Release

* Add SegmentationDiff

* change pointer to reference

* fixed bug

* cast uint8 to int32

* Add diff compare for OCR

* Add diff compare for OCR

* rm ppocr pipeline

* Add yolov5 diff compare

* Add yolov5 diff compare

* deal with comments

* deal with comments

* fixed bug

* fixed bug
2023-02-23 18:57:39 +08:00

472 lines
18 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/detection/contrib/yolov5lite.h"
#include "fastdeploy/utils/perf.h"
#include "fastdeploy/vision/utils/utils.h"
#ifdef WITH_GPU
#include "fastdeploy/vision/utils/cuda_utils.h"
#endif // WITH_GPU
namespace fastdeploy {
namespace vision {
namespace detection {
void YOLOv5Lite::LetterBox(Mat* mat, const std::vector<int>& size,
const std::vector<float>& color, bool _auto,
bool scale_fill, bool scale_up, int stride) {
float scale =
std::min(size[1] * 1.0 / mat->Height(), size[0] * 1.0 / mat->Width());
if (!scale_up) {
scale = std::min(scale, 1.0f);
}
int resize_h = int(round(mat->Height() * scale));
int resize_w = int(round(mat->Width() * scale));
int pad_w = size[0] - resize_w;
int pad_h = size[1] - resize_h;
if (_auto) {
pad_h = pad_h % stride;
pad_w = pad_w % stride;
} else if (scale_fill) {
pad_h = 0;
pad_w = 0;
resize_h = size[1];
resize_w = size[0];
}
if (resize_h != mat->Height() || resize_w != mat->Width()) {
Resize::Run(mat, resize_w, resize_h);
}
if (pad_h > 0 || pad_w > 0) {
float half_h = pad_h * 1.0 / 2;
int top = int(round(half_h - 0.1));
int bottom = int(round(half_h + 0.1));
float half_w = pad_w * 1.0 / 2;
int left = int(round(half_w - 0.1));
int right = int(round(half_w + 0.1));
Pad::Run(mat, top, bottom, left, right, color);
}
}
void YOLOv5Lite::GenerateAnchors(const std::vector<int>& size,
const std::vector<int>& downsample_strides,
std::vector<Anchor>* anchors,
int num_anchors) {
// size: tuple of input (width, height)
// downsample_strides: downsample strides in YOLOv5Lite, e.g (8,16,32)
const int width = size[0];
const int height = size[1];
for (int i = 0; i < downsample_strides.size(); ++i) {
const int ds = downsample_strides[i];
int num_grid_w = width / ds;
int num_grid_h = height / ds;
for (int an = 0; an < num_anchors; ++an) {
float anchor_w = anchor_config[i][an * 2];
float anchor_h = anchor_config[i][an * 2 + 1];
for (int g1 = 0; g1 < num_grid_h; ++g1) {
for (int g0 = 0; g0 < num_grid_w; ++g0) {
(*anchors).emplace_back(Anchor{g0, g1, ds, anchor_w, anchor_h});
}
}
}
}
}
YOLOv5Lite::YOLOv5Lite(const std::string& model_file,
const std::string& params_file,
const RuntimeOption& custom_option,
const ModelFormat& model_format) {
if (model_format == ModelFormat::ONNX) {
valid_cpu_backends = {Backend::ORT};
valid_gpu_backends = {Backend::ORT, Backend::TRT};
} else {
valid_cpu_backends = {Backend::PDINFER, Backend::ORT};
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
}
runtime_option = custom_option;
runtime_option.model_format = model_format;
runtime_option.model_file = model_file;
runtime_option.params_file = params_file;
#ifdef WITH_GPU
cudaSetDevice(runtime_option.device_id);
cudaStream_t stream;
CUDA_CHECK(cudaStreamCreate(&stream));
cuda_stream_ = reinterpret_cast<void*>(stream);
runtime_option.SetExternalStream(cuda_stream_);
#endif // WITH_GPU
initialized = Initialize();
}
bool YOLOv5Lite::Initialize() {
// parameters for preprocess
size = {640, 640};
padding_value = {114.0, 114.0, 114.0};
downsample_strides = {8, 16, 32};
is_mini_pad = false;
is_no_pad = false;
is_scale_up = false;
stride = 32;
max_wh = 7680.0;
is_decode_exported = false;
anchor_config = {{10.0, 13.0, 16.0, 30.0, 33.0, 23.0},
{30.0, 61.0, 62.0, 45.0, 59.0, 119.0},
{116.0, 90.0, 156.0, 198.0, 373.0, 326.0}};
reused_input_tensors_.resize(1);
if (!InitRuntime()) {
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
return false;
}
// Check if the input shape is dynamic after Runtime already initialized,
// Note that, We need to force is_mini_pad 'false' to keep static
// shape after padding (LetterBox) when the is_dynamic_shape is 'false'.
is_dynamic_input_ = false;
auto shape = InputInfoOfRuntime(0).shape;
for (int i = 0; i < shape.size(); ++i) {
// if height or width is dynamic
if (i >= 2 && shape[i] <= 0) {
is_dynamic_input_ = true;
break;
}
}
if (!is_dynamic_input_) {
is_mini_pad = false;
}
return true;
}
YOLOv5Lite::~YOLOv5Lite() {
#ifdef WITH_GPU
if (use_cuda_preprocessing_) {
CUDA_CHECK(cudaFreeHost(input_img_cuda_buffer_host_));
CUDA_CHECK(cudaFree(input_img_cuda_buffer_device_));
CUDA_CHECK(cudaFree(input_tensor_cuda_buffer_device_));
CUDA_CHECK(cudaStreamDestroy(reinterpret_cast<cudaStream_t>(cuda_stream_)));
}
#endif // WITH_GPU
}
bool YOLOv5Lite::Preprocess(
Mat* mat, FDTensor* output,
std::map<std::string, std::array<float, 2>>* im_info) {
// process after image load
float ratio = std::min(size[1] * 1.0f / static_cast<float>(mat->Height()),
size[0] * 1.0f / static_cast<float>(mat->Width()));
if (std::fabs(ratio - 1.0f) > 1e-06) {
int interp = cv::INTER_AREA;
if (ratio > 1.0) {
interp = cv::INTER_LINEAR;
}
int resize_h = int(mat->Height() * ratio);
int resize_w = int(mat->Width() * ratio);
Resize::Run(mat, resize_w, resize_h, -1, -1, interp);
}
// yolov5lite's preprocess steps
// 1. letterbox
// 2. BGR->RGB
// 3. HWC->CHW
YOLOv5Lite::LetterBox(mat, size, padding_value, is_mini_pad, is_no_pad,
is_scale_up, stride);
BGR2RGB::Run(mat);
// Normalize::Run(mat, std::vector<float>(mat->Channels(), 0.0),
// std::vector<float>(mat->Channels(), 1.0));
// Compute `result = mat * alpha + beta` directly by channel
std::vector<float> alpha = {1.0f / 255.0f, 1.0f / 255.0f, 1.0f / 255.0f};
std::vector<float> beta = {0.0f, 0.0f, 0.0f};
Convert::Run(mat, alpha, beta);
// Record output shape of preprocessed image
(*im_info)["output_shape"] = {static_cast<float>(mat->Height()),
static_cast<float>(mat->Width())};
HWC2CHW::Run(mat);
Cast::Run(mat, "float");
mat->ShareWithTensor(output);
output->shape.insert(output->shape.begin(), 1); // reshape to n, c, h, w
return true;
}
void YOLOv5Lite::UseCudaPreprocessing(int max_image_size) {
#ifdef WITH_GPU
use_cuda_preprocessing_ = true;
is_scale_up = true;
if (input_img_cuda_buffer_host_ == nullptr) {
// prepare input data cache in GPU pinned memory
CUDA_CHECK(cudaMallocHost((void**)&input_img_cuda_buffer_host_,
max_image_size * 3));
// prepare input data cache in GPU device memory
CUDA_CHECK(
cudaMalloc((void**)&input_img_cuda_buffer_device_, max_image_size * 3));
CUDA_CHECK(cudaMalloc((void**)&input_tensor_cuda_buffer_device_,
3 * size[0] * size[1] * sizeof(float)));
}
#else
FDWARNING << "The FastDeploy didn't compile with WITH_GPU=ON." << std::endl;
use_cuda_preprocessing_ = false;
#endif
}
bool YOLOv5Lite::CudaPreprocess(
Mat* mat, FDTensor* output,
std::map<std::string, std::array<float, 2>>* im_info) {
#ifdef WITH_GPU
if (is_mini_pad != false || is_no_pad != false || is_scale_up != true) {
FDERROR << "Preprocessing with CUDA is only available when the arguments "
"satisfy (is_mini_pad=false, is_no_pad=false, is_scale_up=true)."
<< std::endl;
return false;
}
// Record the shape of image and the shape of preprocessed image
(*im_info)["input_shape"] = {static_cast<float>(mat->Height()),
static_cast<float>(mat->Width())};
(*im_info)["output_shape"] = {static_cast<float>(mat->Height()),
static_cast<float>(mat->Width())};
cudaStream_t stream = reinterpret_cast<cudaStream_t>(cuda_stream_);
int src_img_buf_size = mat->Height() * mat->Width() * mat->Channels();
memcpy(input_img_cuda_buffer_host_, mat->Data(), src_img_buf_size);
CUDA_CHECK(cudaMemcpyAsync(input_img_cuda_buffer_device_,
input_img_cuda_buffer_host_, src_img_buf_size,
cudaMemcpyHostToDevice, stream));
utils::CudaYoloPreprocess(input_img_cuda_buffer_device_, mat->Width(),
mat->Height(), input_tensor_cuda_buffer_device_,
size[0], size[1], padding_value, stream);
// Record output shape of preprocessed image
(*im_info)["output_shape"] = {static_cast<float>(size[0]),
static_cast<float>(size[1])};
output->SetExternalData({mat->Channels(), size[0], size[1]}, FDDataType::FP32,
input_tensor_cuda_buffer_device_);
output->device = Device::GPU;
output->shape.insert(output->shape.begin(), 1); // reshape to n, c, h, w
return true;
#else
FDERROR << "CUDA src code was not enabled." << std::endl;
return false;
#endif // WITH_GPU
}
bool YOLOv5Lite::PostprocessWithDecode(
FDTensor& infer_result, DetectionResult* result,
const std::map<std::string, std::array<float, 2>>& im_info,
float conf_threshold, float nms_iou_threshold) {
FDASSERT(infer_result.shape[0] == 1, "Only support batch =1 now.");
result->Clear();
result->Reserve(infer_result.shape[1]);
if (infer_result.dtype != FDDataType::FP32) {
FDERROR << "Only support post process with float32 data." << std::endl;
return false;
}
// generate anchors with dowmsample strides
std::vector<YOLOv5Lite::Anchor> anchors;
int num_anchors = anchor_config[0].size() / 2;
GenerateAnchors(size, downsample_strides, &anchors, num_anchors);
// infer_result shape might look like (1,n,85=5+80)
float* data = static_cast<float*>(infer_result.Data());
for (size_t i = 0; i < infer_result.shape[1]; ++i) {
int s = i * infer_result.shape[2];
float confidence = data[s + 4];
float* max_class_score =
std::max_element(data + s + 5, data + s + infer_result.shape[2]);
confidence *= (*max_class_score);
// filter boxes by conf_threshold
if (confidence <= conf_threshold) {
continue;
}
int32_t label_id = std::distance(data + s + 5, max_class_score);
// fetch i-th anchor
float grid0 = static_cast<float>(anchors.at(i).grid0);
float grid1 = static_cast<float>(anchors.at(i).grid1);
float downsample_stride = static_cast<float>(anchors.at(i).stride);
float anchor_w = static_cast<float>(anchors.at(i).anchor_w);
float anchor_h = static_cast<float>(anchors.at(i).anchor_h);
// convert from offsets to [x, y, w, h]
float dx = data[s];
float dy = data[s + 1];
float dw = data[s + 2];
float dh = data[s + 3];
float x = (dx * 2.0f - 0.5f + grid0) * downsample_stride;
float y = (dy * 2.0f - 0.5f + grid1) * downsample_stride;
float w = std::pow(dw * 2.0f, 2.0f) * anchor_w;
float h = std::pow(dh * 2.0f, 2.0f) * anchor_h;
// convert from [x, y, w, h] to [x1, y1, x2, y2]
result->boxes.emplace_back(std::array<float, 4>{
x - w / 2.0f + label_id * max_wh, y - h / 2.0f + label_id * max_wh,
x + w / 2.0f + label_id * max_wh, y + h / 2.0f + label_id * max_wh});
// label_id * max_wh for multi classes NMS
result->label_ids.push_back(label_id);
result->scores.push_back(confidence);
}
utils::NMS(result, nms_iou_threshold);
// scale the boxes to the origin image shape
auto iter_out = im_info.find("output_shape");
auto iter_ipt = im_info.find("input_shape");
FDASSERT(iter_out != im_info.end() && iter_ipt != im_info.end(),
"Cannot find input_shape or output_shape from im_info.");
float out_h = iter_out->second[0];
float out_w = iter_out->second[1];
float ipt_h = iter_ipt->second[0];
float ipt_w = iter_ipt->second[1];
float scale = std::min(out_h / ipt_h, out_w / ipt_w);
float pad_h = (out_h - ipt_h * scale) / 2.0f;
float pad_w = (out_w - ipt_w * scale) / 2.0f;
if (is_mini_pad) {
pad_h = static_cast<float>(static_cast<int>(pad_h) % stride);
pad_w = static_cast<float>(static_cast<int>(pad_w) % stride);
}
for (size_t i = 0; i < result->boxes.size(); ++i) {
int32_t label_id = (result->label_ids)[i];
// clip box
result->boxes[i][0] = result->boxes[i][0] - max_wh * label_id;
result->boxes[i][1] = result->boxes[i][1] - max_wh * label_id;
result->boxes[i][2] = result->boxes[i][2] - max_wh * label_id;
result->boxes[i][3] = result->boxes[i][3] - max_wh * label_id;
result->boxes[i][0] = std::max((result->boxes[i][0] - pad_w) / scale, 0.0f);
result->boxes[i][1] = std::max((result->boxes[i][1] - pad_h) / scale, 0.0f);
result->boxes[i][2] = std::max((result->boxes[i][2] - pad_w) / scale, 0.0f);
result->boxes[i][3] = std::max((result->boxes[i][3] - pad_h) / scale, 0.0f);
result->boxes[i][0] = std::min(result->boxes[i][0], ipt_w - 1.0f);
result->boxes[i][1] = std::min(result->boxes[i][1], ipt_h - 1.0f);
result->boxes[i][2] = std::min(result->boxes[i][2], ipt_w - 1.0f);
result->boxes[i][3] = std::min(result->boxes[i][3], ipt_h - 1.0f);
}
return true;
}
bool YOLOv5Lite::Postprocess(
FDTensor& infer_result, DetectionResult* result,
const std::map<std::string, std::array<float, 2>>& im_info,
float conf_threshold, float nms_iou_threshold) {
FDASSERT(infer_result.shape[0] == 1, "Only support batch =1 now.");
result->Clear();
result->Reserve(infer_result.shape[1]);
if (infer_result.dtype != FDDataType::FP32) {
FDERROR << "Only support post process with float32 data." << std::endl;
return false;
}
float* data = static_cast<float*>(infer_result.Data());
for (size_t i = 0; i < infer_result.shape[1]; ++i) {
int s = i * infer_result.shape[2];
float confidence = data[s + 4];
float* max_class_score =
std::max_element(data + s + 5, data + s + infer_result.shape[2]);
confidence *= (*max_class_score);
// filter boxes by conf_threshold
if (confidence <= conf_threshold) {
continue;
}
int32_t label_id = std::distance(data + s + 5, max_class_score);
// convert from [x, y, w, h] to [x1, y1, x2, y2]
result->boxes.emplace_back(std::array<float, 4>{
data[s] - data[s + 2] / 2.0f + label_id * max_wh,
data[s + 1] - data[s + 3] / 2.0f + label_id * max_wh,
data[s + 0] + data[s + 2] / 2.0f + label_id * max_wh,
data[s + 1] + data[s + 3] / 2.0f + label_id * max_wh});
result->label_ids.push_back(label_id);
result->scores.push_back(confidence);
}
utils::NMS(result, nms_iou_threshold);
// scale the boxes to the origin image shape
auto iter_out = im_info.find("output_shape");
auto iter_ipt = im_info.find("input_shape");
FDASSERT(iter_out != im_info.end() && iter_ipt != im_info.end(),
"Cannot find input_shape or output_shape from im_info.");
float out_h = iter_out->second[0];
float out_w = iter_out->second[1];
float ipt_h = iter_ipt->second[0];
float ipt_w = iter_ipt->second[1];
float scale = std::min(out_h / ipt_h, out_w / ipt_w);
float pad_h = (out_h - ipt_h * scale) / 2.0f;
float pad_w = (out_w - ipt_w * scale) / 2.0f;
if (is_mini_pad) {
pad_h = static_cast<float>(static_cast<int>(pad_h) % stride);
pad_w = static_cast<float>(static_cast<int>(pad_w) % stride);
}
for (size_t i = 0; i < result->boxes.size(); ++i) {
int32_t label_id = (result->label_ids)[i];
// clip box
result->boxes[i][0] = result->boxes[i][0] - max_wh * label_id;
result->boxes[i][1] = result->boxes[i][1] - max_wh * label_id;
result->boxes[i][2] = result->boxes[i][2] - max_wh * label_id;
result->boxes[i][3] = result->boxes[i][3] - max_wh * label_id;
result->boxes[i][0] = std::max((result->boxes[i][0] - pad_w) / scale, 0.0f);
result->boxes[i][1] = std::max((result->boxes[i][1] - pad_h) / scale, 0.0f);
result->boxes[i][2] = std::max((result->boxes[i][2] - pad_w) / scale, 0.0f);
result->boxes[i][3] = std::max((result->boxes[i][3] - pad_h) / scale, 0.0f);
result->boxes[i][0] = std::min(result->boxes[i][0], ipt_w - 1.0f);
result->boxes[i][1] = std::min(result->boxes[i][1], ipt_h - 1.0f);
result->boxes[i][2] = std::min(result->boxes[i][2], ipt_w - 1.0f);
result->boxes[i][3] = std::min(result->boxes[i][3], ipt_h - 1.0f);
}
return true;
}
bool YOLOv5Lite::Predict(cv::Mat* im, DetectionResult* result,
float conf_threshold, float nms_iou_threshold) {
Mat mat(*im);
std::map<std::string, std::array<float, 2>> im_info;
// Record the shape of image and the shape of preprocessed image
im_info["input_shape"] = {static_cast<float>(mat.Height()),
static_cast<float>(mat.Width())};
im_info["output_shape"] = {static_cast<float>(mat.Height()),
static_cast<float>(mat.Width())};
if (use_cuda_preprocessing_) {
if (!CudaPreprocess(&mat, &reused_input_tensors_[0], &im_info)) {
FDERROR << "Failed to preprocess input image." << std::endl;
return false;
}
} else {
if (!Preprocess(&mat, &reused_input_tensors_[0], &im_info)) {
FDERROR << "Failed to preprocess input image." << std::endl;
return false;
}
}
reused_input_tensors_[0].name = InputInfoOfRuntime(0).name;
if (!Infer()) {
FDERROR << "Failed to inference." << std::endl;
return false;
}
if (is_decode_exported) {
if (!Postprocess(reused_output_tensors_[0], result, im_info, conf_threshold,
nms_iou_threshold)) {
FDERROR << "Failed to post process." << std::endl;
return false;
}
} else {
if (!PostprocessWithDecode(reused_output_tensors_[0], result, im_info,
conf_threshold, nms_iou_threshold)) {
FDERROR << "Failed to post process." << std::endl;
return false;
}
}
return true;
}
} // namespace detection
} // namespace vision
} // namespace fastdeploy