Files
FastDeploy/fastdeploy/vision/classification/ppcls/model.cc
yunyaoXYY c38b7d4377 [Backend] Support onnxruntime DirectML inference. (#1304)
* Fix links in readme

* Fix links in readme

* Update PPOCRv2/v3 examples

* Update auto compression configs

* Add neww quantization  support for paddleclas model

* Update quantized Yolov6s model download link

* Improve PPOCR comments

* Add English doc for quantization

* Fix PPOCR rec model bug

* Add  new paddleseg quantization support

* Add  new paddleseg quantization support

* Add  new paddleseg quantization support

* Add  new paddleseg quantization support

* Add Ascend model list

* Add ascend model list

* Add ascend model list

* Add ascend model list

* Add ascend model list

* Add ascend model list

* Add ascend model list

* Support DirectML in onnxruntime

* Support onnxruntime DirectML

* Support onnxruntime DirectML

* Support onnxruntime DirectML

* Support OnnxRuntime DirectML

* Support OnnxRuntime DirectML

* Support OnnxRuntime DirectML

* Support OnnxRuntime DirectML

* Support OnnxRuntime DirectML

* Support OnnxRuntime DirectML

* Support OnnxRuntime DirectML

* Support OnnxRuntime DirectML

* Remove DirectML vision model example

* Imporve OnnxRuntime DirectML

* Imporve OnnxRuntime DirectML

* fix opencv cmake in Windows

* recheck codestyle
2023-02-17 10:53:51 +08:00

123 lines
4.1 KiB
C++
Executable File

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/classification/ppcls/model.h"
#include "fastdeploy/utils/unique_ptr.h"
namespace fastdeploy {
namespace vision {
namespace classification {
PaddleClasModel::PaddleClasModel(const std::string& model_file,
const std::string& params_file,
const std::string& config_file,
const RuntimeOption& custom_option,
const ModelFormat& model_format)
: preprocessor_(config_file) {
if (model_format == ModelFormat::PADDLE) {
valid_cpu_backends = {Backend::OPENVINO, Backend::PDINFER, Backend::ORT,
Backend::LITE};
valid_gpu_backends = {Backend::ORT, Backend::PDINFER, Backend::TRT};
valid_timvx_backends = {Backend::LITE};
valid_ascend_backends = {Backend::LITE};
valid_kunlunxin_backends = {Backend::LITE};
valid_ipu_backends = {Backend::PDINFER};
valid_directml_backends = {Backend::ORT};
} else if (model_format == ModelFormat::SOPHGO) {
valid_sophgonpu_backends = {Backend::SOPHGOTPU};
} else {
valid_cpu_backends = {Backend::ORT, Backend::OPENVINO};
valid_gpu_backends = {Backend::ORT, Backend::TRT};
valid_rknpu_backends = {Backend::RKNPU2};
valid_directml_backends = {Backend::ORT};
}
runtime_option = custom_option;
runtime_option.model_format = model_format;
runtime_option.model_file = model_file;
runtime_option.params_file = params_file;
initialized = Initialize();
}
std::unique_ptr<PaddleClasModel> PaddleClasModel::Clone() const {
std::unique_ptr<PaddleClasModel> clone_model =
utils::make_unique<PaddleClasModel>(PaddleClasModel(*this));
clone_model->SetRuntime(clone_model->CloneRuntime());
return clone_model;
}
bool PaddleClasModel::Initialize() {
if (!InitRuntime()) {
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
return false;
}
return true;
}
bool PaddleClasModel::Predict(cv::Mat* im, ClassifyResult* result, int topk) {
postprocessor_.SetTopk(topk);
if (!Predict(*im, result)) {
return false;
}
return true;
}
bool PaddleClasModel::Predict(const cv::Mat& im, ClassifyResult* result) {
FDMat mat = WrapMat(im);
return Predict(mat, result);
}
bool PaddleClasModel::BatchPredict(const std::vector<cv::Mat>& images,
std::vector<ClassifyResult>* results) {
std::vector<FDMat> mats = WrapMat(images);
return BatchPredict(mats, results);
}
bool PaddleClasModel::Predict(const FDMat& mat, ClassifyResult* result) {
std::vector<ClassifyResult> results;
std::vector<FDMat> mats = {mat};
if (!BatchPredict(mats, &results)) {
return false;
}
*result = std::move(results[0]);
return true;
}
bool PaddleClasModel::BatchPredict(const std::vector<FDMat>& mats,
std::vector<ClassifyResult>* results) {
std::vector<FDMat> fd_mats = mats;
if (!preprocessor_.Run(&fd_mats, &reused_input_tensors_)) {
FDERROR << "Failed to preprocess the input image." << std::endl;
return false;
}
reused_input_tensors_[0].name = InputInfoOfRuntime(0).name;
if (!Infer(reused_input_tensors_, &reused_output_tensors_)) {
FDERROR << "Failed to inference by runtime." << std::endl;
return false;
}
if (!postprocessor_.Run(reused_output_tensors_, results)) {
FDERROR << "Failed to postprocess the inference results by runtime."
<< std::endl;
return false;
}
return true;
}
} // namespace classification
} // namespace vision
} // namespace fastdeploy