mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00

* Fix links in readme * Fix links in readme * Update PPOCRv2/v3 examples * Update auto compression configs * Add neww quantization support for paddleclas model * Update quantized Yolov6s model download link * Improve PPOCR comments * Add English doc for quantization * Fix PPOCR rec model bug * Add new paddleseg quantization support * Add new paddleseg quantization support * Add new paddleseg quantization support * Add new paddleseg quantization support * Add Ascend model list * Add ascend model list * Add ascend model list * Add ascend model list * Add ascend model list * Add ascend model list * Add ascend model list * Support DirectML in onnxruntime * Support onnxruntime DirectML * Support onnxruntime DirectML * Support onnxruntime DirectML * Support OnnxRuntime DirectML * Support OnnxRuntime DirectML * Support OnnxRuntime DirectML * Support OnnxRuntime DirectML * Support OnnxRuntime DirectML * Support OnnxRuntime DirectML * Support OnnxRuntime DirectML * Support OnnxRuntime DirectML * Remove DirectML vision model example * Imporve OnnxRuntime DirectML * Imporve OnnxRuntime DirectML * fix opencv cmake in Windows * recheck codestyle
123 lines
4.1 KiB
C++
Executable File
123 lines
4.1 KiB
C++
Executable File
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/vision/classification/ppcls/model.h"
|
|
|
|
#include "fastdeploy/utils/unique_ptr.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
namespace classification {
|
|
|
|
PaddleClasModel::PaddleClasModel(const std::string& model_file,
|
|
const std::string& params_file,
|
|
const std::string& config_file,
|
|
const RuntimeOption& custom_option,
|
|
const ModelFormat& model_format)
|
|
: preprocessor_(config_file) {
|
|
if (model_format == ModelFormat::PADDLE) {
|
|
valid_cpu_backends = {Backend::OPENVINO, Backend::PDINFER, Backend::ORT,
|
|
Backend::LITE};
|
|
valid_gpu_backends = {Backend::ORT, Backend::PDINFER, Backend::TRT};
|
|
valid_timvx_backends = {Backend::LITE};
|
|
valid_ascend_backends = {Backend::LITE};
|
|
valid_kunlunxin_backends = {Backend::LITE};
|
|
valid_ipu_backends = {Backend::PDINFER};
|
|
valid_directml_backends = {Backend::ORT};
|
|
} else if (model_format == ModelFormat::SOPHGO) {
|
|
valid_sophgonpu_backends = {Backend::SOPHGOTPU};
|
|
} else {
|
|
valid_cpu_backends = {Backend::ORT, Backend::OPENVINO};
|
|
valid_gpu_backends = {Backend::ORT, Backend::TRT};
|
|
valid_rknpu_backends = {Backend::RKNPU2};
|
|
valid_directml_backends = {Backend::ORT};
|
|
}
|
|
|
|
runtime_option = custom_option;
|
|
runtime_option.model_format = model_format;
|
|
runtime_option.model_file = model_file;
|
|
runtime_option.params_file = params_file;
|
|
initialized = Initialize();
|
|
}
|
|
|
|
std::unique_ptr<PaddleClasModel> PaddleClasModel::Clone() const {
|
|
std::unique_ptr<PaddleClasModel> clone_model =
|
|
utils::make_unique<PaddleClasModel>(PaddleClasModel(*this));
|
|
clone_model->SetRuntime(clone_model->CloneRuntime());
|
|
return clone_model;
|
|
}
|
|
|
|
bool PaddleClasModel::Initialize() {
|
|
if (!InitRuntime()) {
|
|
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool PaddleClasModel::Predict(cv::Mat* im, ClassifyResult* result, int topk) {
|
|
postprocessor_.SetTopk(topk);
|
|
if (!Predict(*im, result)) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool PaddleClasModel::Predict(const cv::Mat& im, ClassifyResult* result) {
|
|
FDMat mat = WrapMat(im);
|
|
return Predict(mat, result);
|
|
}
|
|
|
|
bool PaddleClasModel::BatchPredict(const std::vector<cv::Mat>& images,
|
|
std::vector<ClassifyResult>* results) {
|
|
std::vector<FDMat> mats = WrapMat(images);
|
|
return BatchPredict(mats, results);
|
|
}
|
|
|
|
bool PaddleClasModel::Predict(const FDMat& mat, ClassifyResult* result) {
|
|
std::vector<ClassifyResult> results;
|
|
std::vector<FDMat> mats = {mat};
|
|
if (!BatchPredict(mats, &results)) {
|
|
return false;
|
|
}
|
|
*result = std::move(results[0]);
|
|
return true;
|
|
}
|
|
|
|
bool PaddleClasModel::BatchPredict(const std::vector<FDMat>& mats,
|
|
std::vector<ClassifyResult>* results) {
|
|
std::vector<FDMat> fd_mats = mats;
|
|
if (!preprocessor_.Run(&fd_mats, &reused_input_tensors_)) {
|
|
FDERROR << "Failed to preprocess the input image." << std::endl;
|
|
return false;
|
|
}
|
|
reused_input_tensors_[0].name = InputInfoOfRuntime(0).name;
|
|
if (!Infer(reused_input_tensors_, &reused_output_tensors_)) {
|
|
FDERROR << "Failed to inference by runtime." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
if (!postprocessor_.Run(reused_output_tensors_, results)) {
|
|
FDERROR << "Failed to postprocess the inference results by runtime."
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
} // namespace classification
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|