mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00

* [Docs] Pick seg fastdeploy docs from PaddleSeg * [Docs] update seg docs * [Docs] Add c&csharp examples for seg * [Docs] Add c&csharp examples for seg * [Doc] Update paddleseg README.md * Update README.md
35 lines
927 B
Python
Executable File
35 lines
927 B
Python
Executable File
import fastdeploy as fd
|
|
import cv2
|
|
import os
|
|
|
|
|
|
def parse_arguments():
|
|
import argparse
|
|
import ast
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--model", required=True, help="Path of PaddleSeg model.")
|
|
parser.add_argument(
|
|
"--image", type=str, required=True, help="Path of test image file.")
|
|
return parser.parse_args()
|
|
|
|
|
|
runtime_option = fd.RuntimeOption()
|
|
runtime_option.use_ascend()
|
|
|
|
# setup runtime
|
|
model_file = os.path.join(args.model, "model.pdmodel")
|
|
params_file = os.path.join(args.model, "model.pdiparams")
|
|
config_file = os.path.join(args.model, "deploy.yaml")
|
|
model = fd.vision.segmentation.PaddleSegModel(
|
|
model_file, params_file, config_file, runtime_option=runtime_option)
|
|
|
|
# predict
|
|
im = cv2.imread(args.image)
|
|
result = model.predict(im)
|
|
print(result)
|
|
|
|
# visualize
|
|
vis_im = fd.vision.vis_segmentation(im, result, weight=0.5)
|
|
cv2.imwrite("vis_img.png", vis_im)
|