mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00

* [Docs] Pick seg fastdeploy docs from PaddleSeg * [Docs] update seg docs * [Docs] Add c&csharp examples for seg * [Docs] Add c&csharp examples for seg * [Doc] Update paddleseg README.md * Update README.md
175 lines
6.6 KiB
C++
175 lines
6.6 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/vision.h"
|
|
|
|
#ifdef WIN32
|
|
const char sep = '\\';
|
|
#else
|
|
const char sep = '/';
|
|
#endif
|
|
|
|
void CpuInfer(const std::string& model_dir, const std::string& image_file,
|
|
const std::string& background_file) {
|
|
auto model_file = model_dir + sep + "model.pdmodel";
|
|
auto params_file = model_dir + sep + "model.pdiparams";
|
|
auto config_file = model_dir + sep + "deploy.yaml";
|
|
auto option = fastdeploy::RuntimeOption();
|
|
option.UseCpu();
|
|
auto model = fastdeploy::vision::matting::PPMatting(model_file, params_file,
|
|
config_file, option);
|
|
if (!model.Initialized()) {
|
|
std::cerr << "Failed to initialize." << std::endl;
|
|
return;
|
|
}
|
|
|
|
auto im = cv::imread(image_file);
|
|
cv::Mat bg = cv::imread(background_file);
|
|
fastdeploy::vision::MattingResult res;
|
|
if (!model.Predict(&im, &res)) {
|
|
std::cerr << "Failed to predict." << std::endl;
|
|
return;
|
|
}
|
|
auto vis_im = fastdeploy::vision::VisMatting(im, res);
|
|
auto vis_im_with_bg = fastdeploy::vision::SwapBackground(im, bg, res);
|
|
cv::imwrite("visualized_result.jpg", vis_im_with_bg);
|
|
cv::imwrite("visualized_result_fg.png", vis_im);
|
|
std::cout << "Visualized result save in ./visualized_result_replaced_bg.jpg "
|
|
"and ./visualized_result_fg.jpg"
|
|
<< std::endl;
|
|
}
|
|
|
|
void KunlunXinInfer(const std::string& model_dir, const std::string& image_file,
|
|
const std::string& background_file) {
|
|
auto model_file = model_dir + sep + "model.pdmodel";
|
|
auto params_file = model_dir + sep + "model.pdiparams";
|
|
auto config_file = model_dir + sep + "deploy.yaml";
|
|
auto option = fastdeploy::RuntimeOption();
|
|
option.UseKunlunXin();
|
|
auto model = fastdeploy::vision::matting::PPMatting(model_file, params_file,
|
|
config_file, option);
|
|
if (!model.Initialized()) {
|
|
std::cerr << "Failed to initialize." << std::endl;
|
|
return;
|
|
}
|
|
|
|
auto im = cv::imread(image_file);
|
|
cv::Mat bg = cv::imread(background_file);
|
|
fastdeploy::vision::MattingResult res;
|
|
if (!model.Predict(&im, &res)) {
|
|
std::cerr << "Failed to predict." << std::endl;
|
|
return;
|
|
}
|
|
auto vis_im = fastdeploy::vision::VisMatting(im, res);
|
|
auto vis_im_with_bg = fastdeploy::vision::SwapBackground(im, bg, res);
|
|
cv::imwrite("visualized_result.jpg", vis_im_with_bg);
|
|
cv::imwrite("visualized_result_fg.png", vis_im);
|
|
std::cout << "Visualized result save in ./visualized_result_replaced_bg.jpg "
|
|
"and ./visualized_result_fg.jpg"
|
|
<< std::endl;
|
|
}
|
|
|
|
void GpuInfer(const std::string& model_dir, const std::string& image_file,
|
|
const std::string& background_file) {
|
|
auto model_file = model_dir + sep + "model.pdmodel";
|
|
auto params_file = model_dir + sep + "model.pdiparams";
|
|
auto config_file = model_dir + sep + "deploy.yaml";
|
|
|
|
auto option = fastdeploy::RuntimeOption();
|
|
option.UseGpu();
|
|
option.UsePaddleInferBackend();
|
|
auto model = fastdeploy::vision::matting::PPMatting(model_file, params_file,
|
|
config_file, option);
|
|
if (!model.Initialized()) {
|
|
std::cerr << "Failed to initialize." << std::endl;
|
|
return;
|
|
}
|
|
|
|
auto im = cv::imread(image_file);
|
|
cv::Mat bg = cv::imread(background_file);
|
|
fastdeploy::vision::MattingResult res;
|
|
if (!model.Predict(&im, &res)) {
|
|
std::cerr << "Failed to predict." << std::endl;
|
|
return;
|
|
}
|
|
auto vis_im = fastdeploy::vision::VisMatting(im, res);
|
|
auto vis_im_with_bg = fastdeploy::vision::SwapBackground(im, bg, res);
|
|
cv::imwrite("visualized_result.jpg", vis_im_with_bg);
|
|
cv::imwrite("visualized_result_fg.png", vis_im);
|
|
std::cout << "Visualized result save in ./visualized_result_replaced_bg.jpg "
|
|
"and ./visualized_result_fg.png"
|
|
<< std::endl;
|
|
}
|
|
|
|
void TrtInfer(const std::string& model_dir, const std::string& image_file,
|
|
const std::string& background_file) {
|
|
auto model_file = model_dir + sep + "model.pdmodel";
|
|
auto params_file = model_dir + sep + "model.pdiparams";
|
|
auto config_file = model_dir + sep + "deploy.yaml";
|
|
|
|
auto option = fastdeploy::RuntimeOption();
|
|
option.UseGpu();
|
|
option.UseTrtBackend();
|
|
// If use original Tensorrt, not Paddle-TensorRT,
|
|
// comment the following two lines
|
|
option.EnablePaddleToTrt();
|
|
option.EnablePaddleTrtCollectShape();
|
|
option.SetTrtInputShape("img", {1, 3, 512, 512});
|
|
auto model = fastdeploy::vision::matting::PPMatting(model_file, params_file,
|
|
config_file, option);
|
|
if (!model.Initialized()) {
|
|
std::cerr << "Failed to initialize." << std::endl;
|
|
return;
|
|
}
|
|
|
|
auto im = cv::imread(image_file);
|
|
cv::Mat bg = cv::imread(background_file);
|
|
fastdeploy::vision::MattingResult res;
|
|
if (!model.Predict(&im, &res)) {
|
|
std::cerr << "Failed to predict." << std::endl;
|
|
return;
|
|
}
|
|
auto vis_im = fastdeploy::vision::VisMatting(im, res);
|
|
auto vis_im_with_bg = fastdeploy::vision::SwapBackground(im, bg, res);
|
|
cv::imwrite("visualized_result.jpg", vis_im_with_bg);
|
|
cv::imwrite("visualized_result_fg.png", vis_im);
|
|
std::cout << "Visualized result save in ./visualized_result_replaced_bg.jpg "
|
|
"and ./visualized_result_fg.jpg"
|
|
<< std::endl;
|
|
}
|
|
|
|
int main(int argc, char* argv[]) {
|
|
if (argc < 5) {
|
|
std::cout
|
|
<< "Usage: infer_demo path/to/model_dir path/to/image run_option, "
|
|
"e.g ./infer_model ./PP-Matting-512 ./test.jpg ./test_bg.jpg 0"
|
|
<< std::endl;
|
|
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
|
|
"with gpu; 2: run with gpu and use tensorrt backend, 3: run "
|
|
"with kunlunxin."
|
|
<< std::endl;
|
|
return -1;
|
|
}
|
|
if (std::atoi(argv[4]) == 0) {
|
|
CpuInfer(argv[1], argv[2], argv[3]);
|
|
} else if (std::atoi(argv[4]) == 1) {
|
|
GpuInfer(argv[1], argv[2], argv[3]);
|
|
} else if (std::atoi(argv[4]) == 2) {
|
|
TrtInfer(argv[1], argv[2], argv[3]);
|
|
} else if (std::atoi(argv[4]) == 3) {
|
|
KunlunXinInfer(argv[1], argv[2], argv[3]);
|
|
}
|
|
return 0;
|
|
}
|