Files
FastDeploy/examples/vision/keypointdetection/det_keypoint_unite/python
charl-u cbf88a46fa [Doc]Update English version of some documents (#1083)
* 第一次提交

* 补充一处漏翻译

* deleted:    docs/en/quantize.md

* Update one translation

* Update en version

* Update one translation in code

* Standardize one writing

* Standardize one writing

* Update some en version

* Fix a grammer problem

* Update en version for api/vision result

* Merge branch 'develop' of https://github.com/charl-u/FastDeploy into develop

* Checkout the link in README in vision_results/ to the en documents

* Modify a title

* Add link to serving/docs/

* Finish translation of demo.md

* Update english version of serving/docs/

* Update title of readme

* Update some links

* Modify a title

* Update some links

* Update en version of java android README

* Modify some titles

* Modify some titles

* Modify some titles

* modify article to document

* update some english version of documents in examples

* Add english version of documents in examples/visions

* Sync to current branch

* Add english version of documents in examples

* Add english version of documents in examples

* Add english version of documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples
2023-01-09 10:08:19 +08:00
..

English | 简体中文

PP-PicoDet + PP-TinyPose (Pipeline) Python Deployment Example

Before deployment, two steps require confirmation

This directory provides the Multi-person keypoint detection in a single image example that det_keypoint_unite_infer.py fast finishes the deployment of multi-person detection model PP-PicoDet + PP-TinyPose on CPU/GPU and GPU accelerated by TensorRT. The script is as follows

Attention: For standalone deployment of PP-TinyPose single model, refer to PP-TinyPose Single Model

# Download the deployment example code 
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/examples/vision/keypointdetection/det_keypoint_unite/python

# Download PP-TinyPose model files and test images 
wget https://bj.bcebos.com/paddlehub/fastdeploy/PP_TinyPose_256x192_infer.tgz
tar -xvf PP_TinyPose_256x192_infer.tgz
wget https://bj.bcebos.com/paddlehub/fastdeploy/PP_PicoDet_V2_S_Pedestrian_320x320_infer.tgz
tar -xvf PP_PicoDet_V2_S_Pedestrian_320x320_infer.tgz
wget https://bj.bcebos.com/paddlehub/fastdeploy/000000018491.jpg
# CPU inference
python det_keypoint_unite_infer.py --tinypose_model_dir PP_TinyPose_256x192_infer --det_model_dir PP_PicoDet_V2_S_Pedestrian_320x320_infer --image 000000018491.jpg --device cpu
# GPU inference
python det_keypoint_unite_infer.py --tinypose_model_dir PP_TinyPose_256x192_infer --det_model_dir PP_PicoDet_V2_S_Pedestrian_320x320_infer --image 000000018491.jpg --device gpu
# TensorRT inference on GPU Attention: It is somewhat time-consuming for the operation of model serialization when running TensorRT inference for the first time. Please be patient.
python det_keypoint_unite_infer.py --tinypose_model_dir PP_TinyPose_256x192_infer --det_model_dir PP_PicoDet_V2_S_Pedestrian_320x320_infer --image 000000018491.jpg --device gpu --use_trt True
# kunlunxin XPU inference
python det_keypoint_unite_infer.py --tinypose_model_dir PP_TinyPose_256x192_infer --det_model_dir PP_PicoDet_V2_S_Pedestrian_320x320_infer --image 000000018491.jpg --device kunlunxin

The visualized result after running is as follows

PPTinyPosePipeline Python Interface

fd.pipeline.PPTinyPose(det_model=None, pptinypose_model=None)

PPTinyPosePipeline model loading and initialization, among which the det_model is the detection model initialized by fd.vision.detection.PicoDetRefer to Detection Document and pptinypose_model is the detection model initialized by fd.vision.keypointdetection.PPTinyPoseRefer to PP-TinyPose Document

Parameter

  • det_model(str): Initialized detection model
  • pptinypose_model(str): Initialized PP-TinyPose model

predict function

PPTinyPosePipeline.predict(input_image)

Model prediction interface. Input images and output keypoint detection results.

Parameter

  • input_image(np.ndarray): Input data in HWC or BGR format

Return

Return fastdeploy.vision.KeyPointDetectionResult structure. Refer to Vision Model Prediction Results for the description of the structure.

Class Member Property

Post-processing Parameter

  • detection_model_score_threshold(bool): Score threshold of the Detectin model for filtering detection boxes before entering the PP-TinyPose model

Other Documents