mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00

* RKNPU2 Backend兼容其他模型的量化 fd_tensor正式移除zp和scale的量化参数 * 更新FP32返回值的RKYOLO * 更新rkyolov5支持fp32格式 * 更新rkyolov5支持fp32格式 * 更新YOLOv5速度文档 Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
56 lines
1.7 KiB
C++
56 lines
1.7 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
#include "fastdeploy/vision.h"
|
|
|
|
void RKNPU2Infer(const std::string& model_file, const std::string& image_file) {
|
|
auto option = fastdeploy::RuntimeOption();
|
|
option.UseRKNPU2();
|
|
|
|
auto format = fastdeploy::ModelFormat::RKNN;
|
|
|
|
auto model = fastdeploy::vision::detection::RKYOLOV5(
|
|
model_file, option,format);
|
|
|
|
auto im = cv::imread(image_file);
|
|
|
|
fastdeploy::vision::DetectionResult res;
|
|
fastdeploy::TimeCounter tc;
|
|
tc.Start();
|
|
if (!model.Predict(im, &res)) {
|
|
std::cerr << "Failed to predict." << std::endl;
|
|
return;
|
|
}
|
|
auto vis_im = fastdeploy::vision::VisDetection(im, res,0.5);
|
|
tc.End();
|
|
tc.PrintInfo("RKYOLOV5 in RKNN");
|
|
std::cout << res.Str() << std::endl;
|
|
cv::imwrite("vis_result.jpg", vis_im);
|
|
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
|
}
|
|
|
|
int main(int argc, char* argv[]) {
|
|
if (argc < 3) {
|
|
std::cout
|
|
<< "Usage: infer_demo path/to/model_dir path/to/image run_option, "
|
|
"e.g ./infer_model ./picodet_model_dir ./test.jpeg"
|
|
<< std::endl;
|
|
return -1;
|
|
}
|
|
|
|
RKNPU2Infer(argv[1], argv[2]);
|
|
|
|
return 0;
|
|
}
|
|
|