mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 08:37:06 +08:00

* add ocr examples * add ppyoloe examples add picodet examples * remove /ScaleFactor in ppdet/postprocessor.cc
60 lines
1.8 KiB
Python
60 lines
1.8 KiB
Python
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
import fastdeploy as fd
|
||
import cv2
|
||
import os
|
||
|
||
|
||
def parse_arguments():
|
||
import argparse
|
||
import ast
|
||
parser = argparse.ArgumentParser()
|
||
parser.add_argument(
|
||
"--model_file", required=True, help="Path of sophgo model.")
|
||
parser.add_argument("--config_file", required=True, help="Path of config.")
|
||
parser.add_argument(
|
||
"--image", type=str, required=True, help="Path of test image file.")
|
||
return parser.parse_args()
|
||
|
||
|
||
if __name__ == "__main__":
|
||
args = parse_arguments()
|
||
|
||
model_file = args.model_file
|
||
params_file = ""
|
||
config_file = args.config_file
|
||
|
||
# 配置runtime,加载模型
|
||
runtime_option = fd.RuntimeOption()
|
||
runtime_option.use_sophgo()
|
||
|
||
model = fd.vision.detection.PPYOLOE(
|
||
model_file,
|
||
params_file,
|
||
config_file,
|
||
runtime_option=runtime_option,
|
||
model_format=fd.ModelFormat.SOPHGO)
|
||
|
||
model.postprocessor.apply_decode_and_nms()
|
||
|
||
# 预测图片分割结果
|
||
im = cv2.imread(args.image)
|
||
result = model.predict(im)
|
||
print(result)
|
||
|
||
# 可视化结果
|
||
vis_im = fd.vision.vis_detection(im, result, score_threshold=0.5)
|
||
cv2.imwrite("sophgo_result.jpg", vis_im)
|
||
print("Visualized result save in ./sophgo_result.jpg")
|