mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00

* add GPL lisence * add GPL-3.0 lisence * add GPL-3.0 lisence * add GPL-3.0 lisence * support yolov8 * add pybind for yolov8 * add yolov8 readme * add cpp benchmark * add cpu and gpu mem * public part split * add runtime mode * fixed bugs * add cpu_thread_nums * deal with comments * deal with comments * deal with comments * rm useless code * add FASTDEPLOY_DECL * add FASTDEPLOY_DECL * fixed for windows * mv rss to pss * mv rss to pss * Update utils.cc * use thread to collect mem * Add ResourceUsageMonitor * rm useless code * fixed bug * fixed typo * update ResourceUsageMonitor * fixed bug * fixed bug * add note for ResourceUsageMonitor * deal with comments * add macros * deal with comments * deal with comments * deal with comments * re-lint * rm pmap and use mem api * rm pmap and use mem api * add mem api * Add PrintBenchmarkInfo func * Add PrintBenchmarkInfo func * Add PrintBenchmarkInfo func * deal with comments * fixed enable_paddle_to_trt * add log for paddle_trt * support ppcls benchmark * use new trt option api * update benchmark info * simplify benchmark.cc * simplify benchmark.cc * deal with comments * Add ppseg && ppocr benchmark * add OCR rec img * add ocr benchmark * fixed trt shape * add trt shape * resolve conflict * add ENABLE_BENCHMARK define --------- Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
323 lines
11 KiB
Python
Executable File
323 lines
11 KiB
Python
Executable File
import numpy as np
|
|
import os
|
|
import time
|
|
import distutils.util
|
|
import sys
|
|
import json
|
|
|
|
import fastdeploy as fd
|
|
from fastdeploy.text import UIEModel, SchemaLanguage
|
|
|
|
|
|
def parse_arguments():
|
|
import argparse
|
|
import ast
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--model_dir",
|
|
required=True,
|
|
help="The directory of model and tokenizer.")
|
|
parser.add_argument(
|
|
"--data_path", required=True, help="The path of uie data.")
|
|
parser.add_argument(
|
|
"--device",
|
|
type=str,
|
|
default='cpu',
|
|
choices=['gpu', 'cpu'],
|
|
help="Type of inference device, support 'cpu' or 'gpu'.")
|
|
parser.add_argument(
|
|
"--backend",
|
|
type=str,
|
|
default='paddle',
|
|
choices=['ort', 'paddle', 'trt', 'paddle_trt', 'ov'],
|
|
help="The inference runtime backend.")
|
|
parser.add_argument(
|
|
"--device_id", type=int, default=0, help="device(gpu) id")
|
|
parser.add_argument(
|
|
"--batch_size", type=int, default=1, help="The batch size of data.")
|
|
parser.add_argument(
|
|
"--max_length",
|
|
type=int,
|
|
default=128,
|
|
help="The max length of sequence.")
|
|
parser.add_argument(
|
|
"--cpu_num_threads",
|
|
type=int,
|
|
default=8,
|
|
help="The number of threads when inferring on cpu.")
|
|
parser.add_argument(
|
|
"--enable_trt_fp16",
|
|
type=distutils.util.strtobool,
|
|
default=False,
|
|
help="whether enable fp16 in trt backend")
|
|
parser.add_argument(
|
|
"--epoch", type=int, default=1, help="The epoch of test")
|
|
parser.add_argument(
|
|
"--enable_collect_memory_info",
|
|
type=ast.literal_eval,
|
|
default=False,
|
|
help="whether enable collect memory info")
|
|
return parser.parse_args()
|
|
|
|
|
|
def build_option(args):
|
|
option = fd.RuntimeOption()
|
|
if args.device == 'cpu':
|
|
option.use_cpu()
|
|
option.set_cpu_thread_num(args.cpu_num_threads)
|
|
else:
|
|
option.use_gpu(args.device_id)
|
|
if args.backend == 'paddle':
|
|
option.use_paddle_backend()
|
|
elif args.backend == 'ort':
|
|
option.use_ort_backend()
|
|
elif args.backend == 'ov':
|
|
option.use_openvino_backend()
|
|
else:
|
|
option.use_trt_backend()
|
|
if args.backend == 'paddle_trt':
|
|
option.paddle_infer_option.collect_trt_shape = True
|
|
option.use_paddle_infer_backend()
|
|
option.paddle_infer_option.enable_trt = True
|
|
trt_file = os.path.join(args.model_dir, "infer.trt")
|
|
option.trt_option.set_shape(
|
|
'input_ids',
|
|
min_shape=[1, 1],
|
|
opt_shape=[args.batch_size, args.max_length // 2],
|
|
max_shape=[args.batch_size, args.max_length])
|
|
option.trt_option.set_shape(
|
|
'token_type_ids',
|
|
min_shape=[1, 1],
|
|
opt_shape=[args.batch_size, args.max_length // 2],
|
|
max_shape=[args.batch_size, args.max_length])
|
|
option.trt_option.set_shape(
|
|
'pos_ids',
|
|
min_shape=[1, 1],
|
|
opt_shape=[args.batch_size, args.max_length // 2],
|
|
max_shape=[args.batch_size, args.max_length])
|
|
option.trt_option.set_shape(
|
|
'att_mask',
|
|
min_shape=[1, 1],
|
|
opt_shape=[args.batch_size, args.max_length // 2],
|
|
max_shape=[args.batch_size, args.max_length])
|
|
if args.enable_trt_fp16:
|
|
option.enable_trt_fp16()
|
|
trt_file = trt_file + ".fp16"
|
|
option.set_trt_cache_file(trt_file)
|
|
return option
|
|
|
|
|
|
class StatBase(object):
|
|
"""StatBase"""
|
|
nvidia_smi_path = "nvidia-smi"
|
|
gpu_keys = ('index', 'uuid', 'name', 'timestamp', 'memory.total',
|
|
'memory.free', 'memory.used', 'utilization.gpu',
|
|
'utilization.memory')
|
|
nu_opt = ',nounits'
|
|
cpu_keys = ('cpu.util', 'memory.util', 'memory.used')
|
|
|
|
|
|
class Monitor(StatBase):
|
|
"""Monitor"""
|
|
|
|
def __init__(self, use_gpu=False, gpu_id=0, interval=0.1):
|
|
self.result = {}
|
|
self.gpu_id = gpu_id
|
|
self.use_gpu = use_gpu
|
|
self.interval = interval
|
|
self.cpu_stat_q = multiprocessing.Queue()
|
|
|
|
def start(self):
|
|
cmd = '%s --id=%s --query-gpu=%s --format=csv,noheader%s -lms 50' % (
|
|
StatBase.nvidia_smi_path, self.gpu_id, ','.join(StatBase.gpu_keys),
|
|
StatBase.nu_opt)
|
|
if self.use_gpu:
|
|
self.gpu_stat_worker = subprocess.Popen(
|
|
cmd,
|
|
stderr=subprocess.STDOUT,
|
|
stdout=subprocess.PIPE,
|
|
shell=True,
|
|
close_fds=True,
|
|
preexec_fn=os.setsid)
|
|
# cpu stat
|
|
pid = os.getpid()
|
|
self.cpu_stat_worker = multiprocessing.Process(
|
|
target=self.cpu_stat_func,
|
|
args=(self.cpu_stat_q, pid, self.interval))
|
|
self.cpu_stat_worker.start()
|
|
|
|
def stop(self):
|
|
try:
|
|
if self.use_gpu:
|
|
os.killpg(self.gpu_stat_worker.pid, signal.SIGUSR1)
|
|
# os.killpg(p.pid, signal.SIGTERM)
|
|
self.cpu_stat_worker.terminate()
|
|
self.cpu_stat_worker.join(timeout=0.01)
|
|
except Exception as e:
|
|
print(e)
|
|
return
|
|
|
|
# gpu
|
|
if self.use_gpu:
|
|
lines = self.gpu_stat_worker.stdout.readlines()
|
|
lines = [
|
|
line.strip().decode("utf-8") for line in lines
|
|
if line.strip() != ''
|
|
]
|
|
gpu_info_list = [{
|
|
k: v
|
|
for k, v in zip(StatBase.gpu_keys, line.split(', '))
|
|
} for line in lines]
|
|
if len(gpu_info_list) == 0:
|
|
return
|
|
result = gpu_info_list[0]
|
|
for item in gpu_info_list:
|
|
for k in item.keys():
|
|
if k not in ["name", "uuid", "timestamp"]:
|
|
result[k] = max(int(result[k]), int(item[k]))
|
|
else:
|
|
result[k] = max(result[k], item[k])
|
|
self.result['gpu'] = result
|
|
|
|
# cpu
|
|
cpu_result = {}
|
|
if self.cpu_stat_q.qsize() > 0:
|
|
cpu_result = {
|
|
k: v
|
|
for k, v in zip(StatBase.cpu_keys, self.cpu_stat_q.get())
|
|
}
|
|
while not self.cpu_stat_q.empty():
|
|
item = {
|
|
k: v
|
|
for k, v in zip(StatBase.cpu_keys, self.cpu_stat_q.get())
|
|
}
|
|
for k in StatBase.cpu_keys:
|
|
cpu_result[k] = max(cpu_result[k], item[k])
|
|
cpu_result['name'] = cpuinfo.get_cpu_info()['brand_raw']
|
|
self.result['cpu'] = cpu_result
|
|
|
|
def output(self):
|
|
return self.result
|
|
|
|
def cpu_stat_func(self, q, pid, interval=0.0):
|
|
"""cpu stat function"""
|
|
stat_info = psutil.Process(pid)
|
|
while True:
|
|
# pid = os.getpid()
|
|
cpu_util, mem_util, mem_use = stat_info.cpu_percent(
|
|
), stat_info.memory_percent(), round(stat_info.memory_info().rss /
|
|
1024.0 / 1024.0, 4)
|
|
q.put([cpu_util, mem_util, mem_use])
|
|
time.sleep(interval)
|
|
return
|
|
|
|
|
|
def get_dataset(data_path, max_seq_len=512):
|
|
json_lines = []
|
|
with open(data_path, 'r', encoding='utf-8') as f:
|
|
for line in f:
|
|
json_line = json.loads(line)
|
|
content = json_line['content'].strip()
|
|
prompt = json_line['prompt']
|
|
# Model Input is aslike: [CLS] Prompt [SEP] Content [SEP]
|
|
# It include three summary tokens.
|
|
if max_seq_len <= len(prompt) + 3:
|
|
raise ValueError(
|
|
"The value of max_seq_len is too small, please set a larger value"
|
|
)
|
|
json_lines.append(json_line)
|
|
|
|
return json_lines
|
|
|
|
|
|
if __name__ == '__main__':
|
|
args = parse_arguments()
|
|
runtime_option = build_option(args)
|
|
model_path = os.path.join(args.model_dir, "inference.pdmodel")
|
|
param_path = os.path.join(args.model_dir, "inference.pdiparams")
|
|
vocab_path = os.path.join(args.model_dir, "vocab.txt")
|
|
|
|
gpu_id = args.device_id
|
|
enable_collect_memory_info = args.enable_collect_memory_info
|
|
dump_result = dict()
|
|
end2end_statis = list()
|
|
cpu_mem = list()
|
|
gpu_mem = list()
|
|
gpu_util = list()
|
|
if args.device == "cpu":
|
|
file_path = args.model_dir + "_model_" + args.backend + "_" + \
|
|
args.device + "_" + str(args.cpu_num_threads) + ".txt"
|
|
else:
|
|
if args.enable_trt_fp16:
|
|
file_path = args.model_dir + "_model_" + \
|
|
args.backend + "_fp16_" + args.device + ".txt"
|
|
else:
|
|
file_path = args.model_dir + "_model_" + args.backend + "_" + args.device + ".txt"
|
|
f = open(file_path, "w")
|
|
f.writelines("===={}====: \n".format(os.path.split(file_path)[-1][:-4]))
|
|
|
|
ds = get_dataset(args.data_path)
|
|
schema = ["时间"]
|
|
uie = UIEModel(
|
|
model_path,
|
|
param_path,
|
|
vocab_path,
|
|
position_prob=0.5,
|
|
max_length=args.max_length,
|
|
batch_size=args.batch_size,
|
|
schema=schema,
|
|
runtime_option=runtime_option,
|
|
schema_language=SchemaLanguage.ZH)
|
|
|
|
try:
|
|
if enable_collect_memory_info:
|
|
import multiprocessing
|
|
import subprocess
|
|
import psutil
|
|
import signal
|
|
import cpuinfo
|
|
enable_gpu = args.device == "gpu"
|
|
monitor = Monitor(enable_gpu, gpu_id)
|
|
monitor.start()
|
|
uie.enable_record_time_of_runtime()
|
|
|
|
for ep in range(args.epoch):
|
|
for i, sample in enumerate(ds):
|
|
curr_start = time.time()
|
|
uie.set_schema([sample['prompt']])
|
|
result = uie.predict([sample['content']])
|
|
end2end_statis.append(time.time() - curr_start)
|
|
runtime_statis = uie.print_statis_info_of_runtime()
|
|
|
|
warmup_iter = args.epoch * len(ds) // 5
|
|
|
|
end2end_statis_repeat = end2end_statis[warmup_iter:]
|
|
if enable_collect_memory_info:
|
|
monitor.stop()
|
|
mem_info = monitor.output()
|
|
dump_result["cpu_rss_mb"] = mem_info['cpu'][
|
|
'memory.used'] if 'cpu' in mem_info else 0
|
|
dump_result["gpu_rss_mb"] = mem_info['gpu'][
|
|
'memory.used'] if 'gpu' in mem_info else 0
|
|
dump_result["gpu_util"] = mem_info['gpu'][
|
|
'utilization.gpu'] if 'gpu' in mem_info else 0
|
|
|
|
dump_result["runtime"] = runtime_statis["avg_time"] * 1000
|
|
dump_result["end2end"] = np.mean(end2end_statis_repeat) * 1000
|
|
|
|
time_cost_str = f"Runtime(ms): {dump_result['runtime']}\n" \
|
|
f"End2End(ms): {dump_result['end2end']}\n"
|
|
f.writelines(time_cost_str)
|
|
print(time_cost_str)
|
|
|
|
if enable_collect_memory_info:
|
|
mem_info_str = f"cpu_rss_mb: {dump_result['cpu_rss_mb']}\n" \
|
|
f"gpu_rss_mb: {dump_result['gpu_rss_mb']}\n" \
|
|
f"gpu_util: {dump_result['gpu_util']}\n"
|
|
f.writelines(mem_info_str)
|
|
print(mem_info_str)
|
|
except:
|
|
f.writelines("!!!!!Infer Failed\n")
|
|
|
|
f.close()
|