mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 08:37:06 +08:00

* Add namespace for functions * Refactor PaddleDetection module * finish all the single image test * Update preprocessor.cc * fix some litte detail * add python api * Update postprocessor.cc
202 lines
7.4 KiB
C++
202 lines
7.4 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/vision/detection/ppdet/preprocessor.h"
|
|
#include "fastdeploy/function/concat.h"
|
|
#include "fastdeploy/function/pad.h"
|
|
#include "yaml-cpp/yaml.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
namespace detection {
|
|
|
|
PaddleDetPreprocessor::PaddleDetPreprocessor(const std::string& config_file) {
|
|
FDASSERT(BuildPreprocessPipelineFromConfig(config_file), "Failed to create PaddleDetPreprocessor.");
|
|
initialized_ = true;
|
|
}
|
|
|
|
bool PaddleDetPreprocessor::BuildPreprocessPipelineFromConfig(const std::string& config_file) {
|
|
processors_.clear();
|
|
YAML::Node cfg;
|
|
try {
|
|
cfg = YAML::LoadFile(config_file);
|
|
} catch (YAML::BadFile& e) {
|
|
FDERROR << "Failed to load yaml file " << config_file
|
|
<< ", maybe you should check this file." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
processors_.push_back(std::make_shared<BGR2RGB>());
|
|
|
|
bool has_permute = false;
|
|
for (const auto& op : cfg["Preprocess"]) {
|
|
std::string op_name = op["type"].as<std::string>();
|
|
if (op_name == "NormalizeImage") {
|
|
auto mean = op["mean"].as<std::vector<float>>();
|
|
auto std = op["std"].as<std::vector<float>>();
|
|
bool is_scale = true;
|
|
if (op["is_scale"]) {
|
|
is_scale = op["is_scale"].as<bool>();
|
|
}
|
|
std::string norm_type = "mean_std";
|
|
if (op["norm_type"]) {
|
|
norm_type = op["norm_type"].as<std::string>();
|
|
}
|
|
if (norm_type != "mean_std") {
|
|
std::fill(mean.begin(), mean.end(), 0.0);
|
|
std::fill(std.begin(), std.end(), 1.0);
|
|
}
|
|
processors_.push_back(std::make_shared<Normalize>(mean, std, is_scale));
|
|
} else if (op_name == "Resize") {
|
|
bool keep_ratio = op["keep_ratio"].as<bool>();
|
|
auto target_size = op["target_size"].as<std::vector<int>>();
|
|
int interp = op["interp"].as<int>();
|
|
FDASSERT(target_size.size() == 2,
|
|
"Require size of target_size be 2, but now it's %lu.",
|
|
target_size.size());
|
|
if (!keep_ratio) {
|
|
int width = target_size[1];
|
|
int height = target_size[0];
|
|
processors_.push_back(
|
|
std::make_shared<Resize>(width, height, -1.0, -1.0, interp, false));
|
|
} else {
|
|
int min_target_size = std::min(target_size[0], target_size[1]);
|
|
int max_target_size = std::max(target_size[0], target_size[1]);
|
|
std::vector<int> max_size;
|
|
if (max_target_size > 0) {
|
|
max_size.push_back(max_target_size);
|
|
max_size.push_back(max_target_size);
|
|
}
|
|
processors_.push_back(std::make_shared<ResizeByShort>(
|
|
min_target_size, interp, true, max_size));
|
|
}
|
|
} else if (op_name == "Permute") {
|
|
// Do nothing, do permute as the last operation
|
|
has_permute = true;
|
|
continue;
|
|
// processors_.push_back(std::make_shared<HWC2CHW>());
|
|
} else if (op_name == "Pad") {
|
|
auto size = op["size"].as<std::vector<int>>();
|
|
auto value = op["fill_value"].as<std::vector<float>>();
|
|
processors_.push_back(std::make_shared<Cast>("float"));
|
|
processors_.push_back(
|
|
std::make_shared<PadToSize>(size[1], size[0], value));
|
|
} else if (op_name == "PadStride") {
|
|
auto stride = op["stride"].as<int>();
|
|
processors_.push_back(
|
|
std::make_shared<StridePad>(stride, std::vector<float>(3, 0)));
|
|
} else {
|
|
FDERROR << "Unexcepted preprocess operator: " << op_name << "."
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
}
|
|
if (has_permute) {
|
|
// permute = cast<float> + HWC2CHW
|
|
processors_.push_back(std::make_shared<Cast>("float"));
|
|
processors_.push_back(std::make_shared<HWC2CHW>());
|
|
} else {
|
|
processors_.push_back(std::make_shared<HWC2CHW>());
|
|
}
|
|
|
|
// Fusion will improve performance
|
|
FuseTransforms(&processors_);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool PaddleDetPreprocessor::Run(std::vector<FDMat>* images, std::vector<FDTensor>* outputs) {
|
|
if (!initialized_) {
|
|
FDERROR << "The preprocessor is not initialized." << std::endl;
|
|
return false;
|
|
}
|
|
if (images->size() == 0) {
|
|
FDERROR << "The size of input images should be greater than 0." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
// There are 3 outputs, image, scale_factor, im_shape
|
|
// But im_shape is not used for all the PaddleDetection models
|
|
// So preprocessor will output the 3 FDTensors, and how to use `im_shape`
|
|
// is decided by the model itself
|
|
outputs->resize(3);
|
|
int batch = static_cast<int>(images->size());
|
|
// Allocate memory for scale_factor
|
|
(*outputs)[1].Resize({batch, 2}, FDDataType::FP32);
|
|
// Allocate memory for im_shape
|
|
(*outputs)[2].Resize({batch, 2}, FDDataType::FP32);
|
|
// Record the max size for a batch of input image
|
|
// All the tensor will pad to the max size to compose a batched tensor
|
|
std::vector<int> max_hw({-1, -1});
|
|
|
|
float* scale_factor_ptr = reinterpret_cast<float*>((*outputs)[1].MutableData());
|
|
float* im_shape_ptr = reinterpret_cast<float*>((*outputs)[2].MutableData());
|
|
for (size_t i = 0; i < images->size(); ++i) {
|
|
int origin_w = (*images)[i].Width();
|
|
int origin_h = (*images)[i].Height();
|
|
scale_factor_ptr[2 * i] = 1.0;
|
|
scale_factor_ptr[2 * i + 1] = 1.0;
|
|
for (size_t j = 0; j < processors_.size(); ++j) {
|
|
if (!(*(processors_[j].get()))(&((*images)[i]))) {
|
|
FDERROR << "Failed to processs image:" << i << " in " << processors_[i]->Name() << "." << std::endl;
|
|
return false;
|
|
}
|
|
if (processors_[j]->Name().find("Resize") != std::string::npos) {
|
|
scale_factor_ptr[2 * i] = (*images)[i].Height() * 1.0 / origin_h;
|
|
scale_factor_ptr[2 * i + 1] = (*images)[i].Width() * 1.0 / origin_w;
|
|
}
|
|
}
|
|
if ((*images)[i].Height() > max_hw[0]) {
|
|
max_hw[0] = (*images)[i].Height();
|
|
}
|
|
if ((*images)[i].Width() > max_hw[1]) {
|
|
max_hw[1] = (*images)[i].Width();
|
|
}
|
|
im_shape_ptr[2 * i] = max_hw[0];
|
|
im_shape_ptr[2 * i + 1] = max_hw[1];
|
|
}
|
|
|
|
// Concat all the preprocessed data to a batch tensor
|
|
std::vector<FDTensor> im_tensors(images->size());
|
|
for (size_t i = 0; i < images->size(); ++i) {
|
|
if ((*images)[i].Height() < max_hw[0] || (*images)[i].Width() < max_hw[1]) {
|
|
// if the size of image less than max_hw, pad to max_hw
|
|
FDTensor tensor;
|
|
(*images)[i].ShareWithTensor(&tensor);
|
|
function::Pad(tensor, &(im_tensors[i]), {0, 0, max_hw[0] - (*images)[i].Height(), max_hw[1] - (*images)[i].Width()}, 0);
|
|
} else {
|
|
// No need pad
|
|
(*images)[i].ShareWithTensor(&(im_tensors[i]));
|
|
}
|
|
// Reshape to 1xCxHxW
|
|
im_tensors[i].ExpandDim(0);
|
|
}
|
|
|
|
if (im_tensors.size() == 1) {
|
|
// If there's only 1 input, no need to concat
|
|
// skip memory copy
|
|
(*outputs)[0] = std::move(im_tensors[0]);
|
|
} else {
|
|
// Else concat the im tensor for each input image
|
|
// compose a batched input tensor
|
|
function::Concat(im_tensors, &((*outputs)[0]), 0);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
} // namespace detection
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|