Files
FastDeploy/fastdeploy/vision/detection/ppdet/preprocessor.cc
Jason beaa0fd190 [Model] Refactor PaddleDetection module (#575)
* Add namespace for functions

* Refactor PaddleDetection module

* finish all the single image test

* Update preprocessor.cc

* fix some litte detail

* add python api

* Update postprocessor.cc
2022-11-15 10:43:23 +08:00

202 lines
7.4 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/detection/ppdet/preprocessor.h"
#include "fastdeploy/function/concat.h"
#include "fastdeploy/function/pad.h"
#include "yaml-cpp/yaml.h"
namespace fastdeploy {
namespace vision {
namespace detection {
PaddleDetPreprocessor::PaddleDetPreprocessor(const std::string& config_file) {
FDASSERT(BuildPreprocessPipelineFromConfig(config_file), "Failed to create PaddleDetPreprocessor.");
initialized_ = true;
}
bool PaddleDetPreprocessor::BuildPreprocessPipelineFromConfig(const std::string& config_file) {
processors_.clear();
YAML::Node cfg;
try {
cfg = YAML::LoadFile(config_file);
} catch (YAML::BadFile& e) {
FDERROR << "Failed to load yaml file " << config_file
<< ", maybe you should check this file." << std::endl;
return false;
}
processors_.push_back(std::make_shared<BGR2RGB>());
bool has_permute = false;
for (const auto& op : cfg["Preprocess"]) {
std::string op_name = op["type"].as<std::string>();
if (op_name == "NormalizeImage") {
auto mean = op["mean"].as<std::vector<float>>();
auto std = op["std"].as<std::vector<float>>();
bool is_scale = true;
if (op["is_scale"]) {
is_scale = op["is_scale"].as<bool>();
}
std::string norm_type = "mean_std";
if (op["norm_type"]) {
norm_type = op["norm_type"].as<std::string>();
}
if (norm_type != "mean_std") {
std::fill(mean.begin(), mean.end(), 0.0);
std::fill(std.begin(), std.end(), 1.0);
}
processors_.push_back(std::make_shared<Normalize>(mean, std, is_scale));
} else if (op_name == "Resize") {
bool keep_ratio = op["keep_ratio"].as<bool>();
auto target_size = op["target_size"].as<std::vector<int>>();
int interp = op["interp"].as<int>();
FDASSERT(target_size.size() == 2,
"Require size of target_size be 2, but now it's %lu.",
target_size.size());
if (!keep_ratio) {
int width = target_size[1];
int height = target_size[0];
processors_.push_back(
std::make_shared<Resize>(width, height, -1.0, -1.0, interp, false));
} else {
int min_target_size = std::min(target_size[0], target_size[1]);
int max_target_size = std::max(target_size[0], target_size[1]);
std::vector<int> max_size;
if (max_target_size > 0) {
max_size.push_back(max_target_size);
max_size.push_back(max_target_size);
}
processors_.push_back(std::make_shared<ResizeByShort>(
min_target_size, interp, true, max_size));
}
} else if (op_name == "Permute") {
// Do nothing, do permute as the last operation
has_permute = true;
continue;
// processors_.push_back(std::make_shared<HWC2CHW>());
} else if (op_name == "Pad") {
auto size = op["size"].as<std::vector<int>>();
auto value = op["fill_value"].as<std::vector<float>>();
processors_.push_back(std::make_shared<Cast>("float"));
processors_.push_back(
std::make_shared<PadToSize>(size[1], size[0], value));
} else if (op_name == "PadStride") {
auto stride = op["stride"].as<int>();
processors_.push_back(
std::make_shared<StridePad>(stride, std::vector<float>(3, 0)));
} else {
FDERROR << "Unexcepted preprocess operator: " << op_name << "."
<< std::endl;
return false;
}
}
if (has_permute) {
// permute = cast<float> + HWC2CHW
processors_.push_back(std::make_shared<Cast>("float"));
processors_.push_back(std::make_shared<HWC2CHW>());
} else {
processors_.push_back(std::make_shared<HWC2CHW>());
}
// Fusion will improve performance
FuseTransforms(&processors_);
return true;
}
bool PaddleDetPreprocessor::Run(std::vector<FDMat>* images, std::vector<FDTensor>* outputs) {
if (!initialized_) {
FDERROR << "The preprocessor is not initialized." << std::endl;
return false;
}
if (images->size() == 0) {
FDERROR << "The size of input images should be greater than 0." << std::endl;
return false;
}
// There are 3 outputs, image, scale_factor, im_shape
// But im_shape is not used for all the PaddleDetection models
// So preprocessor will output the 3 FDTensors, and how to use `im_shape`
// is decided by the model itself
outputs->resize(3);
int batch = static_cast<int>(images->size());
// Allocate memory for scale_factor
(*outputs)[1].Resize({batch, 2}, FDDataType::FP32);
// Allocate memory for im_shape
(*outputs)[2].Resize({batch, 2}, FDDataType::FP32);
// Record the max size for a batch of input image
// All the tensor will pad to the max size to compose a batched tensor
std::vector<int> max_hw({-1, -1});
float* scale_factor_ptr = reinterpret_cast<float*>((*outputs)[1].MutableData());
float* im_shape_ptr = reinterpret_cast<float*>((*outputs)[2].MutableData());
for (size_t i = 0; i < images->size(); ++i) {
int origin_w = (*images)[i].Width();
int origin_h = (*images)[i].Height();
scale_factor_ptr[2 * i] = 1.0;
scale_factor_ptr[2 * i + 1] = 1.0;
for (size_t j = 0; j < processors_.size(); ++j) {
if (!(*(processors_[j].get()))(&((*images)[i]))) {
FDERROR << "Failed to processs image:" << i << " in " << processors_[i]->Name() << "." << std::endl;
return false;
}
if (processors_[j]->Name().find("Resize") != std::string::npos) {
scale_factor_ptr[2 * i] = (*images)[i].Height() * 1.0 / origin_h;
scale_factor_ptr[2 * i + 1] = (*images)[i].Width() * 1.0 / origin_w;
}
}
if ((*images)[i].Height() > max_hw[0]) {
max_hw[0] = (*images)[i].Height();
}
if ((*images)[i].Width() > max_hw[1]) {
max_hw[1] = (*images)[i].Width();
}
im_shape_ptr[2 * i] = max_hw[0];
im_shape_ptr[2 * i + 1] = max_hw[1];
}
// Concat all the preprocessed data to a batch tensor
std::vector<FDTensor> im_tensors(images->size());
for (size_t i = 0; i < images->size(); ++i) {
if ((*images)[i].Height() < max_hw[0] || (*images)[i].Width() < max_hw[1]) {
// if the size of image less than max_hw, pad to max_hw
FDTensor tensor;
(*images)[i].ShareWithTensor(&tensor);
function::Pad(tensor, &(im_tensors[i]), {0, 0, max_hw[0] - (*images)[i].Height(), max_hw[1] - (*images)[i].Width()}, 0);
} else {
// No need pad
(*images)[i].ShareWithTensor(&(im_tensors[i]));
}
// Reshape to 1xCxHxW
im_tensors[i].ExpandDim(0);
}
if (im_tensors.size() == 1) {
// If there's only 1 input, no need to concat
// skip memory copy
(*outputs)[0] = std::move(im_tensors[0]);
} else {
// Else concat the im tensor for each input image
// compose a batched input tensor
function::Concat(im_tensors, &((*outputs)[0]), 0);
}
return true;
}
} // namespace detection
} // namespace vision
} // namespace fastdeploy