mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 08:37:06 +08:00

* Add namespace for functions * Refactor PaddleDetection module * finish all the single image test * Update preprocessor.cc * fix some litte detail * add python api * Update postprocessor.cc
133 lines
5.0 KiB
C++
133 lines
5.0 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/vision/detection/ppdet/postprocessor.h"
|
|
#include "fastdeploy/vision/utils/utils.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
namespace detection {
|
|
|
|
bool PaddleDetPostprocessor::ProcessMask(const FDTensor& tensor, std::vector<DetectionResult>* results) {
|
|
auto shape = tensor.Shape();
|
|
if (tensor.Dtype() != FDDataType::INT32) {
|
|
FDERROR << "The data type of out mask tensor should be INT32, but now it's " << tensor.Dtype() << std::endl;
|
|
return false;
|
|
}
|
|
int64_t out_mask_h = shape[1];
|
|
int64_t out_mask_w = shape[2];
|
|
int64_t out_mask_numel = shape[1] * shape[2];
|
|
const int32_t* data = reinterpret_cast<const int32_t*>(tensor.CpuData());
|
|
int index = 0;
|
|
|
|
for (int i = 0; i < results->size(); ++i) {
|
|
(*results)[i].contain_masks = true;
|
|
(*results)[i].masks.resize((*results)[i].boxes.size());
|
|
for (int j = 0; j < (*results)[i].boxes.size(); ++j) {
|
|
int x1 = static_cast<int>((*results)[i].boxes[j][0]);
|
|
int y1 = static_cast<int>((*results)[i].boxes[j][1]);
|
|
int x2 = static_cast<int>((*results)[i].boxes[j][2]);
|
|
int y2 = static_cast<int>((*results)[i].boxes[j][3]);
|
|
int keep_mask_h = y2 - y1;
|
|
int keep_mask_w = x2 - x1;
|
|
int keep_mask_numel = keep_mask_h * keep_mask_w;
|
|
(*results)[i].masks[j].Resize(keep_mask_numel);
|
|
(*results)[i].masks[j].shape = {keep_mask_h, keep_mask_w};
|
|
const int32_t* current_ptr = data + index * out_mask_numel;
|
|
|
|
int32_t* keep_mask_ptr = reinterpret_cast<int32_t*>((*results)[i].masks[j].Data());
|
|
for (int row = y1; row < y2; ++row) {
|
|
size_t keep_nbytes_in_col = keep_mask_w * sizeof(int32_t);
|
|
const int32_t* out_row_start_ptr = current_ptr + row * out_mask_w + x1;
|
|
int32_t* keep_row_start_ptr = keep_mask_ptr + (row - y1) * keep_mask_w;
|
|
std::memcpy(keep_row_start_ptr, out_row_start_ptr, keep_nbytes_in_col);
|
|
}
|
|
index += 1;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool PaddleDetPostprocessor::Run(const std::vector<FDTensor>& tensors, std::vector<DetectionResult>* results) {
|
|
if (tensors[0].shape[0] == 0) {
|
|
// No detected boxes
|
|
return true;
|
|
}
|
|
|
|
// Get number of boxes for each input image
|
|
std::vector<int> num_boxes(tensors[1].shape[0]);
|
|
int total_num_boxes = 0;
|
|
if (tensors[1].dtype == FDDataType::INT32) {
|
|
const int32_t* data = static_cast<const int32_t*>(tensors[1].CpuData());
|
|
for (size_t i = 0; i < tensors[1].shape[0]; ++i) {
|
|
num_boxes[i] = static_cast<int>(data[i]);
|
|
total_num_boxes += num_boxes[i];
|
|
}
|
|
} else if (tensors[1].dtype == FDDataType::INT64) {
|
|
const int64_t* data = static_cast<const int64_t*>(tensors[1].CpuData());
|
|
for (size_t i = 0; i < tensors[1].shape[0]; ++i) {
|
|
num_boxes[i] = static_cast<int>(data[i]);
|
|
}
|
|
}
|
|
|
|
// Special case for TensorRT, it has fixed output shape of NMS
|
|
// So there's invalid boxes in its' output boxes
|
|
int num_output_boxes = tensors[0].Shape()[0];
|
|
bool contain_invalid_boxes = false;
|
|
if (total_num_boxes != num_output_boxes) {
|
|
if (num_output_boxes % num_boxes.size() == 0) {
|
|
contain_invalid_boxes = true;
|
|
} else {
|
|
FDERROR << "Cannot handle the output data for this model, unexpected situation." << std::endl;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Get boxes for each input image
|
|
results->resize(num_boxes.size());
|
|
const float* box_data = static_cast<const float*>(tensors[0].CpuData());
|
|
int offset = 0;
|
|
for (size_t i = 0; i < num_boxes.size(); ++i) {
|
|
const float* ptr = box_data + offset;
|
|
(*results)[i].Reserve(num_boxes[i]);
|
|
for (size_t j = 0; j < num_boxes[i]; ++j) {
|
|
(*results)[i].label_ids.push_back(static_cast<int32_t>(round(ptr[j * 6])));
|
|
(*results)[i].scores.push_back(ptr[j * 6 + 1]);
|
|
(*results)[i].boxes.emplace_back(std::array<float, 4>({ptr[j * 6 + 2], ptr[j * 6 + 3], ptr[j * 6 + 4], ptr[j * 6 + 5]}));
|
|
}
|
|
if (contain_invalid_boxes) {
|
|
offset += (num_output_boxes * 6 / num_boxes.size());
|
|
} else {
|
|
offset += (num_boxes[i] * 6);
|
|
}
|
|
}
|
|
|
|
// Only detection
|
|
if (tensors.size() <= 2) {
|
|
return true;
|
|
}
|
|
|
|
if (tensors[2].Shape()[0] != num_output_boxes) {
|
|
FDERROR << "The first dimension of output mask tensor:" << tensors[2].Shape()[0] << " is not equal to the first dimension of output boxes tensor:" << num_output_boxes << "." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
// process for maskrcnn
|
|
return ProcessMask(tensors[2], results);
|
|
}
|
|
|
|
} // namespace detection
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|