Files
FastDeploy/examples/vision/segmentation/paddleseg/cpp/infer.cc
huangjianhui bd7caa17b8 Add PaddleClas infer.py (#107)
* Update README.md

* Update README.md

* Update README.md

* Create README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Add evaluation calculate time and fix some bugs

* Update classification __init__

* Move to ppseg

* Add segmentation doc

* Add PaddleClas infer.py

* Update PaddleClas infer.py

* Delete .infer.py.swp

Co-authored-by: Jason <jiangjiajun@baidu.com>
2022-08-12 19:50:27 +08:00

115 lines
3.7 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision.h"
void CpuInfer(const std::string& model_file, const std::string& params_file,
const std::string& config_file, const std::string& image_file) {
auto option = fastdeploy::RuntimeOption();
option.UseCpu() auto model =
fastdeploy::vision::classification::PaddleClasModel(
model_file, params_file, config_file, option);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return;
}
auto im = cv::imread(image_file);
fastdeploy::vision::ClassifyResult res;
if (!model.Predict(&im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
// print res
res.Str();
}
void GpuInfer(const std::string& model_file, const std::string& params_file,
const std::string& config_file, const std::string& image_file) {
auto option = fastdeploy::RuntimeOption();
option.UseGpu();
auto model = fastdeploy::vision::classification::PaddleClasModel(
model_file, params_file, config_file, option);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return;
}
auto im = cv::imread(image_file);
fastdeploy::vision::ClassifyResult res;
if (!model.Predict(&im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
// print res
res.Str();
}
void TrtInfer(const std::string& model_file, const std::string& params_file,
const std::string& config_file, const std::string& image_file) {
auto option = fastdeploy::RuntimeOption();
option.UseGpu();
option.UseTrtBackend();
option.SetTrtInputShape("inputs", [ 1, 3, 224, 224 ], [ 1, 3, 224, 224 ],
[ 1, 3, 224, 224 ]);
auto model = fastdeploy::vision::classification::PaddleClasModel(
model_file, params_file, config_file, option);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return;
}
auto im = cv::imread(image_file);
fastdeploy::vision::ClassifyResult res;
if (!model.Predict(&im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
// print res
res.Str();
}
int main(int argc, char* argv[]) {
if (argc < 4) {
std::cout << "Usage: infer_demo path/to/model path/to/image run_option, "
"e.g ./infer_demo ./ResNet50_vd ./test.jpeg 0"
<< std::endl;
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
"with gpu; 2: run with gpu and use tensorrt backend."
<< std::endl;
return -1;
}
std::string model_file =
argv[1] + "/" + "model.pdmodel" std::string params_file =
argv[1] + "/" + "model.pdiparams" std::string config_file =
argv[1] + "/" + "inference_cls.yaml" std::string image_file =
argv[2] if (std::atoi(argv[3]) == 0) {
CpuInfer(model_file, params_file, config_file, image_file);
}
else if (std::atoi(argv[3]) == 1) {
GpuInfer(model_file, params_file, config_file, image_file);
}
else if (std::atoi(argv[3]) == 2) {
TrtInfer(model_file, params_file, config_file, image_file);
}
return 0;
}