mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-11-01 20:32:52 +08:00
* Update README.md * Update README.md * Update README.md * Create README.md * Update README.md * Update README.md * Update README.md * Update README.md * Add evaluation calculate time and fix some bugs * Update classification __init__ * Move to ppseg * Add segmentation doc * Add PaddleClas infer.py * Update PaddleClas infer.py * Delete .infer.py.swp Co-authored-by: Jason <jiangjiajun@baidu.com>
115 lines
3.7 KiB
C++
115 lines
3.7 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/vision.h"
|
|
|
|
void CpuInfer(const std::string& model_file, const std::string& params_file,
|
|
const std::string& config_file, const std::string& image_file) {
|
|
auto option = fastdeploy::RuntimeOption();
|
|
option.UseCpu() auto model =
|
|
fastdeploy::vision::classification::PaddleClasModel(
|
|
model_file, params_file, config_file, option);
|
|
if (!model.Initialized()) {
|
|
std::cerr << "Failed to initialize." << std::endl;
|
|
return;
|
|
}
|
|
|
|
auto im = cv::imread(image_file);
|
|
|
|
fastdeploy::vision::ClassifyResult res;
|
|
if (!model.Predict(&im, &res)) {
|
|
std::cerr << "Failed to predict." << std::endl;
|
|
return;
|
|
}
|
|
|
|
// print res
|
|
res.Str();
|
|
}
|
|
|
|
void GpuInfer(const std::string& model_file, const std::string& params_file,
|
|
const std::string& config_file, const std::string& image_file) {
|
|
auto option = fastdeploy::RuntimeOption();
|
|
option.UseGpu();
|
|
auto model = fastdeploy::vision::classification::PaddleClasModel(
|
|
model_file, params_file, config_file, option);
|
|
if (!model.Initialized()) {
|
|
std::cerr << "Failed to initialize." << std::endl;
|
|
return;
|
|
}
|
|
|
|
auto im = cv::imread(image_file);
|
|
|
|
fastdeploy::vision::ClassifyResult res;
|
|
if (!model.Predict(&im, &res)) {
|
|
std::cerr << "Failed to predict." << std::endl;
|
|
return;
|
|
}
|
|
|
|
// print res
|
|
res.Str();
|
|
}
|
|
|
|
void TrtInfer(const std::string& model_file, const std::string& params_file,
|
|
const std::string& config_file, const std::string& image_file) {
|
|
auto option = fastdeploy::RuntimeOption();
|
|
option.UseGpu();
|
|
option.UseTrtBackend();
|
|
option.SetTrtInputShape("inputs", [ 1, 3, 224, 224 ], [ 1, 3, 224, 224 ],
|
|
[ 1, 3, 224, 224 ]);
|
|
auto model = fastdeploy::vision::classification::PaddleClasModel(
|
|
model_file, params_file, config_file, option);
|
|
if (!model.Initialized()) {
|
|
std::cerr << "Failed to initialize." << std::endl;
|
|
return;
|
|
}
|
|
|
|
auto im = cv::imread(image_file);
|
|
|
|
fastdeploy::vision::ClassifyResult res;
|
|
if (!model.Predict(&im, &res)) {
|
|
std::cerr << "Failed to predict." << std::endl;
|
|
return;
|
|
}
|
|
|
|
// print res
|
|
res.Str();
|
|
}
|
|
|
|
int main(int argc, char* argv[]) {
|
|
if (argc < 4) {
|
|
std::cout << "Usage: infer_demo path/to/model path/to/image run_option, "
|
|
"e.g ./infer_demo ./ResNet50_vd ./test.jpeg 0"
|
|
<< std::endl;
|
|
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
|
|
"with gpu; 2: run with gpu and use tensorrt backend."
|
|
<< std::endl;
|
|
return -1;
|
|
}
|
|
|
|
std::string model_file =
|
|
argv[1] + "/" + "model.pdmodel" std::string params_file =
|
|
argv[1] + "/" + "model.pdiparams" std::string config_file =
|
|
argv[1] + "/" + "inference_cls.yaml" std::string image_file =
|
|
argv[2] if (std::atoi(argv[3]) == 0) {
|
|
CpuInfer(model_file, params_file, config_file, image_file);
|
|
}
|
|
else if (std::atoi(argv[3]) == 1) {
|
|
GpuInfer(model_file, params_file, config_file, image_file);
|
|
}
|
|
else if (std::atoi(argv[3]) == 2) {
|
|
TrtInfer(model_file, params_file, config_file, image_file);
|
|
}
|
|
return 0;
|
|
}
|