mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-26 20:41:53 +08:00
480 lines
17 KiB
Python
480 lines
17 KiB
Python
"""
|
|
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
from __future__ import annotations
|
|
|
|
import os
|
|
from dataclasses import dataclass, field
|
|
from enum import Enum
|
|
from typing import Literal, Optional
|
|
|
|
from paddleformers.transformers.configuration_utils import PretrainedConfig
|
|
|
|
from fastdeploy import envs
|
|
from fastdeploy.model_executor.layers.quantization.quant_base import QuantConfigBase
|
|
from fastdeploy.utils import get_logger
|
|
|
|
logger = get_logger("config", "config.log")
|
|
|
|
|
|
class MoEPhase(Enum):
|
|
"""
|
|
The generation phase of the moe.
|
|
"""
|
|
|
|
PREFILL = 1
|
|
DECODER = 2
|
|
|
|
|
|
class ErnieArchitectures:
|
|
"""Helper class for ERNIE architecture check."""
|
|
|
|
ARCHITECTURES = {
|
|
"Ernie4_5_ForCausalLM",
|
|
"Ernie4_5_MoeForCausalLM",
|
|
"Ernie4_5_VLMoeForConditionalGeneration",
|
|
}
|
|
|
|
@classmethod
|
|
def contains_ernie_arch(cls, architectures):
|
|
"""Check if any ERNIE architecture is present in the given architectures."""
|
|
return any(arch in architectures for arch in cls.ARCHITECTURES)
|
|
|
|
@classmethod
|
|
def is_ernie_arch(cls, architecture):
|
|
"""Check if the given architecture is an ERNIE architecture."""
|
|
return architecture in cls.ARCHITECTURES
|
|
|
|
|
|
PRETRAINED_INIT_CONFIGURATION = {
|
|
"rope_theta": 10000.0,
|
|
"num_key_value_heads": -1,
|
|
"start_layer_index": 0,
|
|
"moe_num_shared_experts": 0,
|
|
"moe_layer_start_index": 0,
|
|
"num_max_dispatch_tokens_per_rank": 256,
|
|
"moe_use_aux_free": False,
|
|
"vocab_size": -1,
|
|
"hidden_dropout_prob": 0.0,
|
|
"initializer_range": 0.02,
|
|
"max_position_embeddings": 512,
|
|
"quantization_config": None,
|
|
"tie_word_embeddings": False,
|
|
"rms_norm_eps": 1e-5,
|
|
"moe_num_experts": None,
|
|
"moe_layer_end_index": None,
|
|
}
|
|
|
|
|
|
class ModelConfig:
|
|
"""
|
|
The configuration class to store the configuration of a `LLM`.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
args,
|
|
):
|
|
self.max_stop_seqs_num = 5
|
|
self.stop_seqs_max_len = 8
|
|
|
|
# NOTE(gongshaotain): form _load_model_init_val()
|
|
self.top_p = 1.0
|
|
self.temperature = 1.0
|
|
self.rope_theta = 10000.0
|
|
self.penalty_score = 1.0
|
|
self.frequency_score = 0.0
|
|
self.presence_score = 0.0
|
|
self.min_length = 1
|
|
self.model_name_or_path = ""
|
|
|
|
self.is_quantized = False
|
|
self.max_model_len = 0
|
|
self.dtype = ""
|
|
self.enable_logprob = False
|
|
self.enable_mm = False
|
|
self.enable_redundant_experts = False
|
|
self.redundant_experts_num = 0
|
|
self.lm_head_fp32: bool = False
|
|
|
|
for key, value in args.items():
|
|
if hasattr(self, key):
|
|
setattr(self, key, value)
|
|
|
|
assert self.model_name_or_path != ""
|
|
pretrained_config, _ = PretrainedConfig.get_config_dict(self.model_name_or_path)
|
|
self.pretrained_config = PretrainedConfig.from_dict(pretrained_config)
|
|
|
|
# set attribute from pretrained_config
|
|
for key, value in pretrained_config.items():
|
|
setattr(self, key, value)
|
|
|
|
# we need set default value when not exist
|
|
for key, value in PRETRAINED_INIT_CONFIGURATION.items():
|
|
if not hasattr(self, key):
|
|
setattr(self, key, value)
|
|
|
|
if not hasattr(self, "head_dim"):
|
|
self.head_dim = self.hidden_size // self.num_attention_heads
|
|
|
|
if hasattr(self, "vision_config"):
|
|
self.vision_config = PretrainedConfig.from_dict(self.vision_config)
|
|
|
|
self.ori_vocab_size = args.get("ori_vocab_size", self.vocab_size)
|
|
|
|
|
|
class ParallelConfig:
|
|
"""Configuration for the distributed execution."""
|
|
|
|
def __init__(
|
|
self,
|
|
args,
|
|
):
|
|
self.sequence_parallel = False # Whether to enable sequence parallelism.
|
|
self.use_ep = False # Whether to enable Expert Parallelism
|
|
self.moe_phase = MoEPhase.PREFILL # Generation phase
|
|
self.msg_queue_id = 1 # mesage queue id
|
|
|
|
self.tensor_parallel_rank = 0 # TP rank ID
|
|
self.tensor_parallel_size = 1 # TP degree
|
|
self.expert_parallel_rank = 0 # EP rank ID
|
|
self.expert_parallel_size = 1 # EP degree
|
|
# The embedding weight distributed on your gpu cards is divided by row or column.
|
|
# Defaults to False means divide by row. When vocab_size can not be divided by world_size
|
|
# but hidden_size can, we can consider split embedding weight by column.
|
|
"""
|
|
From old wersion worker args
|
|
TODO(gongshaotian): Reclassify
|
|
"""
|
|
self.model_name_or_path: str = "./output"
|
|
self.max_num_seqs: int = 34
|
|
# Set default block num for profile run
|
|
self.total_block_num: int = 2000
|
|
# block size
|
|
self.block_size: int = 64
|
|
# Engine worker queue port
|
|
self.engine_worker_queue_port: int = 9923
|
|
# Max model len
|
|
self.max_model_len: int = 3072 # max_seq_len
|
|
# cuda visible devices
|
|
self.device_ids: str = "0"
|
|
# Input dtype
|
|
self.dtype: str = "bfloat16"
|
|
# Encoder's decoder num
|
|
self.enc_dec_block_num: int = 1
|
|
# KV cache ratio for input
|
|
self.kv_cache_ratio: float = 0.7
|
|
# First token id
|
|
self.first_token_id: int = 1
|
|
# Gpu memory utilization
|
|
self.gpu_memory_utilization: float = 0.9
|
|
# Process ID of engine
|
|
self.engine_pid: Optional[int] = None
|
|
# Do profile or not
|
|
self.do_profile: bool = False
|
|
#
|
|
self.pad_token_id: int = -1
|
|
#
|
|
self.eos_tokens_lens: int = 2
|
|
# Enable chunked prefill
|
|
self.enable_chunked_prefill: bool = False
|
|
|
|
self.max_num_batched_tokens: int = 2048
|
|
# enable prefix cache
|
|
self.enable_prefix_caching = None
|
|
# splitwise role
|
|
self.splitwise_role: str = "mixed"
|
|
# guided decoding backend
|
|
self.guided_decoding_backend: str = None
|
|
# disable any whitespace for guided decoding
|
|
self.disable_any_whitespace: bool = True
|
|
self.pod_ip: str = None
|
|
# enable the custom all-reduce kernel and fall back to NCCL(dist.all_reduce).
|
|
self.enable_custom_all_reduce: bool = False
|
|
for key, value in args.items():
|
|
if hasattr(self, key):
|
|
setattr(self, key, value)
|
|
self.use_ep = args["expert_parallel_size"] > 1
|
|
if self.splitwise_role == "mixed":
|
|
self.moe_phase = MoEPhase.PREFILL
|
|
elif self.splitwise_role == "prefill":
|
|
self.moe_phase = MoEPhase.PREFILL
|
|
elif self.splitwise_role == "decode":
|
|
self.moe_phase = MoEPhase.DECODER
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
# pd_disaggregation
|
|
use_pd_disaggregation: int = int(os.getenv("FLAGS_use_pd_disaggregation", 0))
|
|
use_pd_disaggregation_per_chunk: int = int(os.getenv("FLAGS_use_pd_disaggregation_per_chunk", 0))
|
|
if use_pd_disaggregation_per_chunk:
|
|
self.pd_disaggregation_mode = "per_chunk"
|
|
elif use_pd_disaggregation:
|
|
self.pd_disaggregation_mode = "per_query"
|
|
else:
|
|
self.pd_disaggregation_mode = "None"
|
|
|
|
|
|
class SpeculativeConfig:
|
|
"""
|
|
Configuration for speculative decoding.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
args,
|
|
):
|
|
# speculative method, choose in [None, "ngram_match", "mtp"]
|
|
self.method: Optional[str] = None
|
|
# the max length of speculative tokens
|
|
self.num_speculative_tokens: int = 1
|
|
# the max length of candidate tokens for speculative method
|
|
self.max_candidate_len: int = 5
|
|
# the max length of verify window for speculative method
|
|
self.verify_window: int = 2
|
|
# ngram match
|
|
self.max_ngram_size: int = 5
|
|
# model for mtp/eagle/draft_model
|
|
self.model_name_or_path: Optional[str] = None
|
|
# quantization of model
|
|
self.quantization: Optional[str] = None
|
|
# allocate more blocks to prevent mtp from finishing the block earlier than the main model
|
|
# Fixed now
|
|
self.num_gpu_block_expand_ratio: Optional[float] = 1
|
|
# To distinguish the main model and draft model(mtp/eagle/draftmodel)
|
|
# ["main", "mtp"]
|
|
self.model_type: Optional[str] = "main"
|
|
# TODO(liuzichang): To reduce memory usage, MTP shares the main model's lm_head and embedding layers.
|
|
# A trick method is currently used to enable this sharing.
|
|
# This will be replaced with a more standardized solution in the future.
|
|
self.sharing_model = None
|
|
# During benchmarking, we need to enforce that the number of accepted tokens is 1.
|
|
# This means no tokens from MTP are accepted.
|
|
# This ensures that the specified simulation acceptance rate is not affected.
|
|
self.benchmark_mode: bool = False
|
|
|
|
# TODO(YuanRisheng): The name of the server args is different from the name of the SpeculativeConfig.
|
|
# We temperately add the name map here and will delete it in future.
|
|
name_map = {
|
|
"speculative_method": "method",
|
|
"speculative_max_draft_token_num": "num_speculative_tokens",
|
|
"speculative_model_name_or_path": "model_name_or_path",
|
|
"speculative_model_quantization": "quantization",
|
|
"speculative_benchmark_mode": "benchmark_mode",
|
|
}
|
|
|
|
for key, value in args.items():
|
|
if key in name_map.keys() and hasattr(self, name_map[key]):
|
|
if key == "speculative_benchmark_mode":
|
|
value = True if value.lower() == "true" else False
|
|
setattr(self, name_map[key], value)
|
|
|
|
|
|
class DeviceConfig:
|
|
"""
|
|
Configuration for device settings.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
args,
|
|
):
|
|
self.device_type = "cuda"
|
|
for key, value in args.items():
|
|
if hasattr(self, key):
|
|
setattr(self, key, value)
|
|
|
|
|
|
@dataclass
|
|
class GraphOptimizationConfig:
|
|
"""
|
|
Configuration for compute graph level optimization.
|
|
"""
|
|
|
|
"""The Top-level graph optimization contral corresponds to different backends.
|
|
- 0: dyncmic graph
|
|
- 1: static graph
|
|
- 2: static graph + cinn compilation backend
|
|
"""
|
|
graph_opt_level: int = 0
|
|
|
|
# CUDA Graph Config
|
|
""" Whether to use cudagraph.
|
|
- False: cudagraph is not used.
|
|
- True: cudagraph is used.
|
|
It requires that all input buffers have fixed addresses, and all
|
|
splitting ops write their outputs to input buffers.
|
|
- With dyncmic graph backend: ...
|
|
- With static grpah backend: WIP
|
|
"""
|
|
sot_warmup_sizes: Optional[list[int]] = field(default_factory=list)
|
|
""" Number of warmup runs for SOT warmup. """
|
|
use_cudagraph: bool = False
|
|
"""Sizes to capture cudagraph.
|
|
- None (default): capture sizes are inferred from llm config.
|
|
- list[int]: capture sizes are specified as given."""
|
|
cudagraph_capture_sizes: Optional[list[int]] = None
|
|
""" Number of warmup runs for cudagraph. """
|
|
cudagraph_num_of_warmups: int = 2
|
|
"""Whether to copy input tensors for cudagraph.
|
|
If the caller can guarantee that the same input buffers
|
|
are always used, it can set this to False. Otherwise, it should
|
|
set this to True."""
|
|
cudagraph_copy_inputs: bool = False
|
|
""" In static graph, this is an operation list that does not need to be captured by the CUDA graph.
|
|
CudaGraphBackend will split these operations from the static graph.
|
|
Example usage:
|
|
cudagraph_splitting_ops = ["paddle.unified_attention"]
|
|
|
|
Note: If want to use subgraph capture functionality in a dynamic graph,
|
|
can manually split the model into multiple layers and apply the @support_graph_optimization decorator
|
|
only to the layer where CUDA graph functionality is required.
|
|
"""
|
|
cudagraph_splitting_ops: list[str] = field(default_factory=list)
|
|
""" Whether to use a full cuda graph for the entire forward pass rather than
|
|
splitting certain operations such as attention into subgraphs.
|
|
Thus this flag cannot be used together with splitting_ops."""
|
|
full_cuda_graph: bool = True
|
|
|
|
max_capture_size: int = field(default=None, init=False) # type: ignore
|
|
batch_size_to_captured_size: dict[int, int] = field(default=None, init=False) # type: ignore
|
|
# CINN Config ...
|
|
|
|
def init_with_cudagrpah_size(self, max_num_seqs: int = 0) -> None:
|
|
"""
|
|
Initialize cuda graph capture sizes and
|
|
pre-compute the mapping from batch size to padded graph size
|
|
"""
|
|
# Regular capture sizes
|
|
self.cudagraph_capture_sizes = [size for size in self.cudagraph_capture_sizes if size <= max_num_seqs]
|
|
dedup_sizes = list(set(self.cudagraph_capture_sizes))
|
|
if len(dedup_sizes) < len(self.cudagraph_capture_sizes):
|
|
logger.info(
|
|
("cudagraph sizes specified by model runner" " %s is overridden by config %s"),
|
|
self.cudagraph_capture_sizes,
|
|
dedup_sizes,
|
|
)
|
|
self.cudagraph_capture_sizes = dedup_sizes
|
|
|
|
# Sort to make sure cudagraph capture sizes are in descending order
|
|
self.cudagraph_capture_sizes.sort(reverse=True)
|
|
self.max_capture_size = self.cudagraph_capture_sizes[0] if self.cudagraph_capture_sizes else 0
|
|
|
|
# Pre-compute the mapping from batch size to padded graph size
|
|
self.batch_size_to_captured_size = {}
|
|
for end, start in zip(self.cudagraph_capture_sizes, self.cudagraph_capture_sizes[1:] + [0]):
|
|
for bs in range(start, end):
|
|
if bs == start:
|
|
self.batch_size_to_captured_size[bs] = start
|
|
else:
|
|
self.batch_size_to_captured_size[bs] = end
|
|
self.batch_size_to_captured_size[self.max_capture_size] = self.max_capture_size
|
|
|
|
def _set_cudagraph_sizes(self, max_num_seqs: int = 0):
|
|
"""
|
|
Calculate a series of candidate capture batch sizes,
|
|
and then extract a portion of them as the capture list for the CUDA graph based on user input.
|
|
"""
|
|
# Batch Size [1, 2, 4, 8, 16, ... 120, 128]
|
|
draft_capture_sizes = [1, 2, 4] + [8 * i for i in range(1, 17)]
|
|
# Batch Size [128, 144, ... 240, 256]
|
|
draft_capture_sizes += [16 * i for i in range(9, 17)]
|
|
# Batch Size [256, 288, ... 992, 1024]
|
|
draft_capture_sizes += [32 * i for i in range(17, 33)]
|
|
|
|
draft_capture_sizes.append(max_num_seqs)
|
|
self.cudagraph_capture_sizes = sorted(draft_capture_sizes)
|
|
|
|
|
|
class LoadConfig:
|
|
"""
|
|
Configuration for dynamic weight loading strategies
|
|
|
|
Attributes:
|
|
dynamic_load_weight: Whether to enable dynamic weight loading
|
|
load_strategy: Specifies the weight loading method when enabled:
|
|
- 'ipc': Real-time IPC streaming with automatic resharding
|
|
- 'ipc_snapshot': Load from disk snapshot of IPC weights
|
|
- None: No dynamic loading
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
args,
|
|
):
|
|
self.use_fastsafetensor = int(envs.FD_USE_FASTSAFETENSOR) == 1
|
|
self.dynamic_load_weight: bool = False
|
|
self.load_strategy: Optional[Literal["ipc", "ipc_snapshot"]] = None
|
|
for key, value in args.items():
|
|
if hasattr(self, key):
|
|
setattr(self, key, value)
|
|
|
|
|
|
class LoRAConfig:
|
|
"""LoRA Config"""
|
|
|
|
pass
|
|
|
|
|
|
class KVCacheConfig:
|
|
"""KV Cache Config"""
|
|
|
|
cache_quant_dtype: str = "none"
|
|
|
|
|
|
class DecodingConfig:
|
|
"""
|
|
Configuration for decoding
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
args,
|
|
):
|
|
self.pad_token_id = None
|
|
for key, value in args.items():
|
|
if hasattr(self, key):
|
|
setattr(self, key, value)
|
|
|
|
|
|
@dataclass
|
|
class FDConfig:
|
|
"""
|
|
The configuration class which contains all fastdeploy-related configuration. This
|
|
simplifies passing around the distinct configurations in the codebase.
|
|
"""
|
|
|
|
model_config: ModelConfig = field(default=None, init=True) # type: ignore
|
|
|
|
parallel_config: ParallelConfig = field(default=None, init=True)
|
|
speculative_config: SpeculativeConfig = field(default=None, init=True) # type: ignore
|
|
device_config: DeviceConfig = field(default=None, init=True) # type: ignore
|
|
load_config: LoadConfig = field(default=None, init=True)
|
|
quant_config: Optional[QuantConfigBase] = None
|
|
graph_opt_config: Optional[GraphOptimizationConfig] = None
|
|
decoding_config: DecodingConfig = field(default=None, init=True) # type: ignore
|
|
kv_cache_config: KVCacheConfig = field(default=None, init=True) # type: ignore
|
|
|
|
def __post_init__(self):
|
|
# Initialize cuda graph capture list
|
|
if self.graph_opt_config.cudagraph_capture_sizes is None:
|
|
self.graph_opt_config._set_cudagraph_sizes(max_num_seqs=self.parallel_config.max_num_seqs)
|
|
self.graph_opt_config.init_with_cudagrpah_size(max_num_seqs=self.parallel_config.max_num_seqs)
|
|
|
|
# TODO(wangmingkai02): change graph_opt_level=2 when using static mode with cinn
|
|
if self.graph_opt_config.graph_opt_level == 2:
|
|
self.graph_opt_config.graph_opt_level = 1
|