mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-27 12:52:29 +08:00
465 lines
19 KiB
Python
465 lines
19 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License"
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
import os
|
|
|
|
import numpy as np
|
|
from paddleformers.generation import GenerationConfig
|
|
|
|
from fastdeploy import envs
|
|
from fastdeploy.input.ernie_tokenizer import ErnieBotTokenizer
|
|
from fastdeploy.input.text_processor import BaseDataProcessor
|
|
from fastdeploy.utils import data_processor_logger
|
|
|
|
_SAMPLING_EPS = 1e-5
|
|
|
|
|
|
class ErnieProcessor(BaseDataProcessor):
|
|
"""
|
|
初始化模型实例。
|
|
|
|
Args:
|
|
model_name_or_path (str): 模型名称或路径。
|
|
|
|
Attributes:
|
|
model_name_or_path (str): 存储模型名称或路径。
|
|
decode_status (dict): 存储解码状态信息。
|
|
tokenizer (object): 存储分词器实例。
|
|
eos_token_ids (list): 存储结束符号的token ID列表。
|
|
eos_token_id_len (int): 存储结束符号的token ID列表的长度。
|
|
pad_token_id (int): 存储填充符号的token ID。
|
|
"""
|
|
|
|
def __init__(self, model_name_or_path, reasoning_parser_obj=None, tool_parser_obj=None):
|
|
|
|
self.model_name_or_path = model_name_or_path
|
|
data_processor_logger.info(f"model_name_or_path: {model_name_or_path}")
|
|
self._init_config()
|
|
|
|
self.decode_status = dict()
|
|
self.tool_parsers = dict()
|
|
self.thinking_parser_dict = dict()
|
|
self._load_tokenizer()
|
|
data_processor_logger.info(
|
|
f"tokenizer information: bos_token is {self.tokenizer.bos_token} \
|
|
{self.tokenizer.bos_token_id}, \
|
|
eos_token is {self.tokenizer.eos_token}, {self.tokenizer.eos_token_id} "
|
|
)
|
|
self.eos_token_ids = [self.tokenizer.eos_token_id]
|
|
self.eos_token_id_len = len(self.eos_token_ids)
|
|
self.pad_token_id = self.get_pad_id()
|
|
self.reasoning_parser = None
|
|
if reasoning_parser_obj:
|
|
self.reasoning_parser = reasoning_parser_obj(self.tokenizer)
|
|
self.tool_parser_obj = tool_parser_obj
|
|
|
|
def _init_config(self):
|
|
self.use_hf_tokenizer = int(envs.FD_USE_HF_TOKENIZER) == 1
|
|
|
|
# Generation config
|
|
try:
|
|
self.generation_config = GenerationConfig.from_pretrained(self.model_name_or_path)
|
|
except Exception as e:
|
|
data_processor_logger.warning(
|
|
f"Can't find generation config, so it will not use "
|
|
f"generation_config field in the model config, details={e}"
|
|
)
|
|
self.generation_config = None
|
|
|
|
def process_request(self, request, max_model_len=None, **kwargs):
|
|
"""
|
|
Preprocess the request
|
|
|
|
Args:
|
|
request (Dict): may contain text and messages fields
|
|
|
|
Returns:
|
|
bool: Whether preprocessing is successful
|
|
str: error message
|
|
"""
|
|
request = self._apply_default_parameters(request)
|
|
if request.get("eos_token_ids") is None or len(request.eos_token_ids) == 0:
|
|
request.eos_token_ids = self.eos_token_ids
|
|
stop_sequences = request.get("stop", [])
|
|
if stop_sequences is not None and len(stop_sequences) != 0:
|
|
stop_seqs, stop_seqs_len = self.update_stop_seq(stop_sequences)
|
|
request.set("stop_token_ids", stop_seqs)
|
|
request.set("stop_seqs_len", stop_seqs_len)
|
|
|
|
if request.prompt_token_ids is None or len(request.prompt_token_ids) == 0:
|
|
if request.prompt is None and request.messages is None:
|
|
raise ValueError(f"The request should have `prompt_token_ids`, `prompt` or `messages`: {request}.")
|
|
if request.prompt is not None:
|
|
prompt = request.prompt if request.prompt is not None else request.messages[0]
|
|
prompt = prompt[0] if isinstance(prompt, list) else prompt
|
|
tokens = self.tokenizer.tokenize(prompt)
|
|
token_ids = self.tokenizer.convert_tokens_to_ids(tokens)
|
|
request.prompt_token_ids = token_ids
|
|
data_processor_logger.info(f"req_id:{request.request_id}, tokens:{tokens}, token_ids: {token_ids}")
|
|
else:
|
|
request.prompt_token_ids = self.messages2ids(request.to_dict())
|
|
|
|
if len(request.prompt_token_ids) == 0:
|
|
raise ValueError("Invalid input: prompt_token_ids must be a non-empty sequence of token IDs")
|
|
if max_model_len is not None and len(request.prompt_token_ids) > max_model_len:
|
|
request.prompt_token_ids = request.prompt_token_ids[: max_model_len - 1]
|
|
if request.get("max_tokens") is None:
|
|
request.set(
|
|
"max_tokens",
|
|
max(1, max_model_len - len(request.prompt_token_ids)),
|
|
)
|
|
if request.get("temperature") < _SAMPLING_EPS:
|
|
# zero temperature is equivalent to greedy sampling
|
|
request.set("temperature", 1)
|
|
if request.get("top_p") < _SAMPLING_EPS:
|
|
request.set("top_p", _SAMPLING_EPS)
|
|
data_processor_logger.info(f"Processed request {request}")
|
|
return request
|
|
|
|
def process_request_dict(self, request, max_model_len=None):
|
|
"""
|
|
Preprocess the request
|
|
|
|
Args:
|
|
request (Dict): may contain text and messages fields
|
|
|
|
Returns:
|
|
bool: Whether preprocessing is successful
|
|
str: error message
|
|
"""
|
|
request = self._apply_default_parameters(request)
|
|
if not request.get("eos_token_ids"):
|
|
request["eos_token_ids"] = self.eos_token_ids
|
|
|
|
# processing stop_sequences
|
|
stop_sequences = request.get("stop", [])
|
|
if stop_sequences:
|
|
stop_seqs, stop_seqs_len = self.update_stop_seq(stop_sequences)
|
|
request["stop_token_ids"] = stop_seqs
|
|
request["stop_seqs_len"] = stop_seqs_len
|
|
|
|
# processing prompt_token_ids
|
|
if not request.get("prompt_token_ids"):
|
|
if request.get("prompt") is None and request.get("messages") is None:
|
|
raise ValueError(f"Request must contain 'prompt_token_ids', 'prompt', or 'messages': {request}")
|
|
if request.get("prompt"):
|
|
prompt = request.get("prompt")
|
|
prompt = prompt[0] if isinstance(prompt, list) else prompt
|
|
request["text_after_process"] = prompt
|
|
tokens = self.tokenizer.tokenize(prompt)
|
|
token_ids = self.tokenizer.convert_tokens_to_ids(tokens)
|
|
request["prompt_token_ids"] = token_ids
|
|
req_id = request.get("request_id", None)
|
|
data_processor_logger.info(f"req_id:{req_id}, tokens:{tokens}, token_ids: {token_ids}")
|
|
else:
|
|
request["prompt_token_ids"] = self.messages2ids(request)
|
|
if len(request["prompt_token_ids"]) == 0:
|
|
raise ValueError("Invalid input: prompt_token_ids must be a non-empty sequence of token IDs")
|
|
|
|
# truncate prompts that exceed the length limit
|
|
if max_model_len is not None and len(request["prompt_token_ids"]) > max_model_len:
|
|
request["prompt_token_ids"] = request["prompt_token_ids"][: max_model_len - 1]
|
|
if request.get("max_tokens") is None:
|
|
request["max_tokens"] = max(1, max_model_len - len(request["prompt_token_ids"]))
|
|
if request.get("temperature") < _SAMPLING_EPS:
|
|
# zero temperature is equivalent to greedy sampling
|
|
request["temperature"] = 1
|
|
if request.get("top_p") < _SAMPLING_EPS:
|
|
request["top_p"] = _SAMPLING_EPS
|
|
data_processor_logger.info(f"Processed request {request}")
|
|
|
|
return request
|
|
|
|
def process_response(self, response_dict, **kwargs):
|
|
"""
|
|
Preprocess the response
|
|
|
|
Args:
|
|
response_dict (Dict): response for engine, contain ids fields
|
|
|
|
Returns:
|
|
Dict: response contain text fields
|
|
"""
|
|
req_id = response_dict.request_id
|
|
token_ids = response_dict.outputs.token_ids
|
|
|
|
response_dict.usage = {"completion_tokens": response_dict.outputs.index + 1}
|
|
if token_ids[-1] == self.tokenizer.eos_token_id:
|
|
token_ids = token_ids[:-1]
|
|
full_text = self.tokenizer.decode(token_ids)
|
|
if self.reasoning_parser:
|
|
reasoning_content, text = self.reasoning_parser.extract_reasoning_content(full_text, response_dict)
|
|
response_dict.outputs.text = text
|
|
response_dict.outputs.reasoning_content = reasoning_content
|
|
else:
|
|
response_dict.outputs.text = full_text
|
|
if self.tool_parser_obj:
|
|
tool_parser = self.tool_parser_obj(self.tokenizer)
|
|
tool_call_info = tool_parser.extract_tool_calls(full_text, response_dict)
|
|
if tool_call_info.tools_called:
|
|
response_dict.outputs.tool_calls = tool_call_info.tool_calls
|
|
response_dict.outputs.text = tool_call_info.content
|
|
data_processor_logger.info(f"req_id:{req_id}, token)ids: {token_ids}")
|
|
if response_dict.outputs.text == "" and response_dict.outputs.reasoning_content == "":
|
|
return None
|
|
return response_dict
|
|
|
|
def process_response_dict(self, response_dict, stream, **kwargs):
|
|
"""
|
|
Preprocess the response
|
|
|
|
Args:
|
|
response_dict (Dict): response for engine, contain ids fields
|
|
|
|
Returns:
|
|
Dict: response contain text fields
|
|
"""
|
|
if stream:
|
|
return self.process_response_dict_streaming(response_dict, **kwargs)
|
|
else:
|
|
return self.process_response_dict_normal(response_dict, **kwargs)
|
|
|
|
def process_response_dict_normal(self, response_dict, **kwargs):
|
|
"""
|
|
Preprocess the response
|
|
|
|
Args:
|
|
response_dict (Dict): response for engine, contain ids fields
|
|
|
|
Returns:
|
|
Dict: response contain text fields
|
|
"""
|
|
enable_thinking = kwargs.get("enable_thinking")
|
|
token_ids = response_dict["outputs"]["token_ids"]
|
|
is_end = response_dict["finished"]
|
|
req_id = response_dict["request_id"]
|
|
if is_end and len(token_ids) > 0 and not kwargs.get("include_stop_str_in_output"):
|
|
if token_ids[-1] == self.tokenizer.eos_token_id:
|
|
token_ids = token_ids[:-1]
|
|
delta_text, _, previous_texts = self.ids2tokens(token_ids, req_id)
|
|
if is_end:
|
|
full_text = previous_texts + delta_text
|
|
if self.reasoning_parser and (
|
|
enable_thinking or self.reasoning_parser.__class__.__name__ == "ErnieX1ReasoningParser"
|
|
):
|
|
reasoning_content, text = self.reasoning_parser.extract_reasoning_content(full_text, response_dict)
|
|
response_dict["outputs"]["text"] = text
|
|
response_dict["outputs"]["reasoning_content"] = reasoning_content
|
|
else:
|
|
response_dict["outputs"]["text"] = full_text
|
|
if self.tool_parser_obj:
|
|
tool_parser = self.tool_parser_obj(self.tokenizer)
|
|
tool_call_info = tool_parser.extract_tool_calls(full_text, response_dict)
|
|
if tool_call_info.tools_called:
|
|
response_dict["outputs"]["tool_call"] = tool_call_info.tool_calls
|
|
response_dict["outputs"]["text"] = tool_call_info.content
|
|
response_dict["outputs"]["raw_prediction"] = full_text
|
|
data_processor_logger.info(f"req_id:{req_id}, decode_status: {self.decode_status[req_id]}")
|
|
del self.decode_status[req_id]
|
|
return response_dict
|
|
|
|
def process_response_dict_streaming(self, response_dict, **kwargs):
|
|
"""
|
|
Preprocess the response streaming
|
|
|
|
Args:
|
|
response_dict (Dict): response for engine, contain ids fields
|
|
|
|
Returns:
|
|
Dict: response contain text fields
|
|
"""
|
|
enable_thinking = kwargs.get("enable_thinking")
|
|
is_end = response_dict["finished"]
|
|
req_id = response_dict["request_id"]
|
|
token_ids = response_dict["outputs"]["token_ids"]
|
|
|
|
if is_end and len(token_ids) > 0 and not kwargs.get("include_stop_str_in_output"):
|
|
if token_ids[-1] == self.tokenizer.eos_token_id:
|
|
token_ids = token_ids[:-1]
|
|
delta_text, previous_token_ids, previous_texts = self.ids2tokens(token_ids, req_id)
|
|
response_dict["outputs"]["raw_prediction"] = delta_text
|
|
if self.reasoning_parser and (
|
|
enable_thinking or self.reasoning_parser.__class__.__name__ == "ErnieX1ReasoningParser"
|
|
):
|
|
reasoning_content, text = self.reasoning_parser.extract_reasoning_content_streaming(
|
|
previous_texts,
|
|
previous_texts + delta_text,
|
|
delta_text,
|
|
previous_token_ids,
|
|
previous_token_ids + token_ids,
|
|
token_ids,
|
|
)
|
|
response_dict["outputs"]["text"] = text
|
|
response_dict["outputs"]["reasoning_content"] = reasoning_content
|
|
else:
|
|
response_dict["outputs"]["text"] = delta_text
|
|
if self.tool_parser_obj:
|
|
if req_id not in self.tool_parsers:
|
|
self.tool_parsers[req_id] = self.tool_parser_obj(self.tokenizer)
|
|
tool_parser = self.tool_parsers[req_id]
|
|
tool_call = tool_parser.extract_tool_calls_streaming(
|
|
previous_texts,
|
|
previous_texts + delta_text,
|
|
delta_text,
|
|
previous_token_ids,
|
|
previous_token_ids + token_ids,
|
|
token_ids,
|
|
response_dict,
|
|
)
|
|
response_dict["outputs"]["tool_delta_message"] = tool_call
|
|
if is_end:
|
|
data_processor_logger.info(f"req_id:{req_id}, decode_status: {self.decode_status[req_id]}")
|
|
del self.decode_status[req_id]
|
|
if req_id in self.tool_parsers:
|
|
del self.tool_parsers[req_id]
|
|
return response_dict
|
|
|
|
def messages2ids(self, request_or_messages):
|
|
"""
|
|
Convert multi-turn messages into ID sequences.
|
|
|
|
Args:
|
|
request_or_messages: Either a request dict containing 'messages' field,
|
|
or a list of message dicts directly
|
|
|
|
Returns:
|
|
List of token IDs as strings (converted from token objects)
|
|
"""
|
|
if self.tokenizer.chat_template is None:
|
|
raise ValueError("This model does not support chat_template.")
|
|
spliced_message = self.tokenizer.apply_chat_template(
|
|
request_or_messages,
|
|
tokenize=False,
|
|
split_special_tokens=False,
|
|
add_special_tokens=False,
|
|
)
|
|
request_or_messages["text_after_process"] = spliced_message
|
|
req_id = None
|
|
if isinstance(request_or_messages, dict):
|
|
req_id = request_or_messages.get("request_id", None)
|
|
tokens = self.tokenizer.tokenize(spliced_message)
|
|
token_ids = self.tokenizer.convert_tokens_to_ids(tokens)
|
|
data_processor_logger.info(f"req_id:{req_id}, tokens:{tokens}, token_ids: {token_ids}")
|
|
return token_ids
|
|
|
|
def ids2tokens(self, token_id, task_id):
|
|
"""
|
|
token ids to strings
|
|
|
|
Args:
|
|
token_ids (List[int]): token ids
|
|
task_id (str): task id
|
|
|
|
Returns:
|
|
List[str]: strings
|
|
"""
|
|
|
|
if task_id not in self.decode_status:
|
|
# prefix offset & read offset & history token ids & history token strings
|
|
self.decode_status[task_id] = [0, 0, [], ""]
|
|
|
|
prefix_offset = self.decode_status[task_id][0]
|
|
read_offset = self.decode_status[task_id][1]
|
|
previous_token_ids = self.decode_status[task_id][2]
|
|
previous_texts = self.decode_status[task_id][3]
|
|
decode_str, prefix_offset, read_offset = self.tokenizer.decode_token(
|
|
previous_token_ids + token_id, prefix_offset, read_offset
|
|
)
|
|
self.decode_status[task_id][0] = prefix_offset
|
|
self.decode_status[task_id][1] = read_offset
|
|
self.decode_status[task_id][2] += token_id
|
|
self.decode_status[task_id][3] += decode_str
|
|
|
|
return decode_str, previous_token_ids, previous_texts
|
|
|
|
def _load_tokenizer(self):
|
|
"""
|
|
load tokenizer
|
|
|
|
Returns:
|
|
tokenizer (AutoTokenizer)
|
|
"""
|
|
vocab_file_names = [
|
|
"tokenizer.model",
|
|
"spm.model",
|
|
"ernie_token_100k.model",
|
|
]
|
|
for i in range(len(vocab_file_names)):
|
|
if os.path.exists(os.path.join(self.model_name_or_path, vocab_file_names[i])):
|
|
ErnieBotTokenizer.resource_files_names["vocab_file"] = vocab_file_names[i]
|
|
break
|
|
self.tokenizer = ErnieBotTokenizer.from_pretrained(self.model_name_or_path)
|
|
|
|
def get_pad_id(self):
|
|
"""
|
|
get pad_token_id, if not pad_token_id, use eos_token
|
|
|
|
Returns:
|
|
int: pad_token_id
|
|
"""
|
|
# if isinstance(self.tokenizer, (LlamaTokenizer, Llama3Tokenizer)) and not self.tokenizer.pad_token_id:
|
|
# return self.tokenizer.eos_token
|
|
return self.tokenizer.pad_token_id
|
|
|
|
def pad_batch_data(
|
|
self,
|
|
insts,
|
|
pad_id=0,
|
|
return_seq_len=False,
|
|
return_array=True,
|
|
pad_style="right",
|
|
):
|
|
"""Pad the instances to the max sequence length in batch."""
|
|
if len(insts) == 0:
|
|
padded_insts = np.array([[]], dtype=np.int64) if return_array else [[]]
|
|
if return_seq_len:
|
|
seq_len = np.array([], dtype=np.int64) if return_array else []
|
|
return padded_insts, seq_len
|
|
return padded_insts
|
|
|
|
max_len = max(map(len, insts))
|
|
if pad_style == "left":
|
|
padded_insts = [[pad_id] * (max_len - len(inst)) + list(inst) for inst in insts]
|
|
else:
|
|
padded_insts = [list(inst) + [pad_id] * (max_len - len(inst)) for inst in insts]
|
|
if return_array:
|
|
padded_insts = np.array(padded_insts, dtype=np.int64).reshape([-1, max_len])
|
|
|
|
if return_seq_len:
|
|
seq_len = [len(inst) for inst in insts]
|
|
if return_array:
|
|
seq_len = np.array(seq_len, dtype=np.int64).reshape(-1, 1)
|
|
return padded_insts, seq_len
|
|
return padded_insts
|
|
|
|
def update_stop_seq(self, stop_sequences):
|
|
"""
|
|
Update stop sequences from request.
|
|
"""
|
|
stop_seqs = []
|
|
if isinstance(stop_sequences, str):
|
|
stop_sequences = [stop_sequences]
|
|
for seq in stop_sequences:
|
|
if seq != self.tokenizer.eos_token_id:
|
|
stop_seqs.append(self.tokenizer.convert_tokens_to_ids(self.tokenizer.tokenize(seq)))
|
|
stop_seqs, stop_seqs_len = self.pad_batch_data(stop_seqs, pad_id=-1, return_seq_len=True, return_array=False)
|
|
data_processor_logger.debug(f"processed stop_seqs: {stop_seqs}, {stop_seqs_len}")
|
|
return stop_seqs, stop_seqs_len
|
|
|
|
def process_logprob_response(self, token_ids, **kwargs):
|
|
full_text = self.tokenizer.decode(token_ids, **kwargs)
|
|
return full_text
|