mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-27 12:52:29 +08:00
658 lines
19 KiB
Python
658 lines
19 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License"
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
from __future__ import annotations
|
|
|
|
import json
|
|
import time
|
|
from typing import Any, Dict, List, Literal, Optional, Union
|
|
|
|
from pydantic import BaseModel, Field, model_validator
|
|
|
|
# from openai.types.chat import ChatCompletionMessageParam
|
|
# from fastdeploy.entrypoints.chat_utils import ChatCompletionMessageParam
|
|
|
|
|
|
class ErrorResponse(BaseModel):
|
|
"""
|
|
Error response from OpenAI API.
|
|
"""
|
|
|
|
object: str = "error"
|
|
message: str
|
|
code: int
|
|
|
|
|
|
class PromptTokenUsageInfo(BaseModel):
|
|
"""
|
|
Prompt-related token usage info.
|
|
"""
|
|
|
|
cached_tokens: Optional[int] = None
|
|
|
|
|
|
class UsageInfo(BaseModel):
|
|
"""
|
|
Usage info for a single request.
|
|
"""
|
|
|
|
prompt_tokens: int = 0
|
|
total_tokens: int = 0
|
|
completion_tokens: Optional[int] = 0
|
|
prompt_tokens_details: Optional[PromptTokenUsageInfo] = None
|
|
|
|
|
|
class FunctionCall(BaseModel):
|
|
"""
|
|
Function call.
|
|
"""
|
|
|
|
name: str
|
|
arguments: str
|
|
|
|
|
|
class ToolCall(BaseModel):
|
|
"""
|
|
Tool call.
|
|
"""
|
|
|
|
id: str = None
|
|
type: Literal["function"] = "function"
|
|
function: FunctionCall
|
|
|
|
|
|
class DeltaFunctionCall(BaseModel):
|
|
"""
|
|
Delta function call.
|
|
"""
|
|
|
|
name: Optional[str] = None
|
|
arguments: Optional[str] = None
|
|
|
|
|
|
# a tool call delta where everything is optional
|
|
class DeltaToolCall(BaseModel):
|
|
"""
|
|
Delta tool call.
|
|
"""
|
|
|
|
id: Optional[str] = None
|
|
type: Optional[Literal["function"]] = None
|
|
index: int
|
|
function: Optional[DeltaFunctionCall] = None
|
|
|
|
|
|
class ExtractedToolCallInformation(BaseModel):
|
|
# indicate if tools were called
|
|
tools_called: bool
|
|
|
|
# extracted tool calls
|
|
tool_calls: Optional[list[ToolCall]] = None
|
|
|
|
# content - per OpenAI spec, content AND tool calls can be returned rarely
|
|
# But some models will do this intentionally
|
|
content: Optional[str] = None
|
|
|
|
|
|
class FunctionDefinition(BaseModel):
|
|
"""
|
|
Function definition.
|
|
"""
|
|
|
|
name: str
|
|
description: Optional[str] = None
|
|
parameters: Optional[dict[str, Any]] = None
|
|
|
|
|
|
class ChatCompletionToolsParam(BaseModel):
|
|
"""
|
|
Chat completion tools parameter.
|
|
"""
|
|
|
|
type: Literal["function"] = "function"
|
|
function: FunctionDefinition
|
|
|
|
|
|
class ChatMessage(BaseModel):
|
|
"""
|
|
Chat message.
|
|
"""
|
|
|
|
role: str
|
|
content: str
|
|
reasoning_content: Optional[str] = None
|
|
tool_calls: Optional[List[DeltaToolCall | ToolCall]] = None
|
|
prompt_token_ids: Optional[List[int]] = None
|
|
completion_token_ids: Optional[List[int]] = None
|
|
text_after_process: Optional[str] = None
|
|
raw_prediction: Optional[str] = None
|
|
|
|
|
|
class ChatCompletionResponseChoice(BaseModel):
|
|
"""
|
|
Chat completion response choice.
|
|
"""
|
|
|
|
index: int
|
|
message: ChatMessage
|
|
logprobs: Optional[LogProbs] = None
|
|
finish_reason: Optional[Literal["stop", "length", "tool_calls", "recover_stop"]]
|
|
|
|
|
|
class ChatCompletionResponse(BaseModel):
|
|
"""
|
|
Chat completion response.
|
|
"""
|
|
|
|
id: str
|
|
object: str = "chat.completion"
|
|
created: int = Field(default_factory=lambda: int(time.time()))
|
|
model: str
|
|
choices: List[ChatCompletionResponseChoice]
|
|
usage: UsageInfo
|
|
|
|
|
|
class LogProbEntry(BaseModel):
|
|
"""
|
|
Log probability entry.
|
|
"""
|
|
|
|
token: str
|
|
logprob: float
|
|
bytes: Optional[List[int]] = None
|
|
top_logprobs: Optional[List[LogProbEntry]] = None
|
|
|
|
|
|
class LogProbs(BaseModel):
|
|
"""
|
|
LogProbs.
|
|
"""
|
|
|
|
content: Optional[List[LogProbEntry]] = None
|
|
refusal: Optional[Union[str, None]] = None
|
|
|
|
|
|
class DeltaMessage(BaseModel):
|
|
"""
|
|
Delta message for chat completion stream response.
|
|
"""
|
|
|
|
role: Optional[str] = None
|
|
content: Optional[str] = None
|
|
prompt_token_ids: Optional[List[int]] = None
|
|
completion_token_ids: Optional[List[int]] = None
|
|
reasoning_content: Optional[str] = None
|
|
tool_calls: Optional[List[DeltaToolCall | ToolCall]] = None
|
|
text_after_process: Optional[str] = None
|
|
raw_prediction: Optional[str] = None
|
|
|
|
|
|
class ChatCompletionResponseStreamChoice(BaseModel):
|
|
"""
|
|
Chat completion response choice for stream response.
|
|
"""
|
|
|
|
index: int
|
|
delta: DeltaMessage
|
|
logprobs: Optional[LogProbs] = None
|
|
finish_reason: Optional[Literal["stop", "length", "tool_calls"]] = None
|
|
arrival_time: Optional[float] = None
|
|
|
|
|
|
class ChatCompletionStreamResponse(BaseModel):
|
|
"""
|
|
Chat completion response for stream response.
|
|
"""
|
|
|
|
id: str
|
|
object: str = "chat.completion.chunk"
|
|
created: int = Field(default_factory=lambda: int(time.time()))
|
|
model: str
|
|
choices: List[ChatCompletionResponseStreamChoice]
|
|
usage: Optional[UsageInfo] = None
|
|
|
|
|
|
class CompletionResponseChoice(BaseModel):
|
|
"""
|
|
Completion response choice.
|
|
"""
|
|
|
|
index: int
|
|
text: str
|
|
prompt_token_ids: Optional[List[int]] = None
|
|
completion_token_ids: Optional[List[int]] = None
|
|
text_after_process: Optional[str] = None
|
|
raw_prediction: Optional[str] = None
|
|
arrival_time: Optional[float] = None
|
|
logprobs: Optional[CompletionLogprobs] = None
|
|
reasoning_content: Optional[str] = None
|
|
finish_reason: Optional[Literal["stop", "length", "tool_calls"]]
|
|
tool_calls: Optional[List[DeltaToolCall | ToolCall]] = None
|
|
|
|
|
|
class CompletionResponse(BaseModel):
|
|
"""
|
|
Completion response.
|
|
"""
|
|
|
|
id: str
|
|
object: str = "text_completion"
|
|
created: int = Field(default_factory=lambda: int(time.time()))
|
|
model: str
|
|
choices: List[CompletionResponseChoice]
|
|
usage: UsageInfo
|
|
|
|
|
|
class CompletionLogprobs(BaseModel):
|
|
"""
|
|
Completion logprobs.
|
|
"""
|
|
|
|
tokens: Optional[List[str]] = None
|
|
token_logprobs: Optional[List[float]] = None
|
|
top_logprobs: Optional[List[Dict]] = None
|
|
text_offset: Optional[List[int]] = None
|
|
|
|
|
|
class CompletionResponseStreamChoice(BaseModel):
|
|
"""
|
|
Completion response choice for stream response.
|
|
"""
|
|
|
|
index: int
|
|
text: str
|
|
arrival_time: float = None
|
|
logprobs: Optional[CompletionLogprobs] = None
|
|
prompt_token_ids: Optional[List[int]] = None
|
|
completion_token_ids: Optional[List[int]] = None
|
|
text_after_process: Optional[str] = None
|
|
raw_prediction: Optional[str] = None
|
|
reasoning_content: Optional[str] = None
|
|
finish_reason: Optional[Literal["stop", "length", "tool_calls"]] = None
|
|
tool_calls: Optional[List[DeltaToolCall | ToolCall]] = None
|
|
|
|
|
|
class CompletionStreamResponse(BaseModel):
|
|
"""
|
|
Completion response for stream response.
|
|
"""
|
|
|
|
id: str
|
|
object: str = "text_completion"
|
|
created: int = Field(default_factory=lambda: int(time.time()))
|
|
model: str
|
|
choices: List[CompletionResponseStreamChoice]
|
|
usage: Optional[UsageInfo] = None
|
|
|
|
|
|
class StreamOptions(BaseModel):
|
|
"""
|
|
Stream options.
|
|
"""
|
|
|
|
include_usage: Optional[bool] = True
|
|
continuous_usage_stats: Optional[bool] = False
|
|
|
|
|
|
class StructuralTag(BaseModel):
|
|
"""
|
|
Structural tag.
|
|
"""
|
|
|
|
begin: str
|
|
structural_tag_schema: Optional[dict[str, Any]] = Field(default=None, alias="schema")
|
|
end: str
|
|
|
|
|
|
class JsonSchemaResponseFormat(BaseModel):
|
|
"""
|
|
Json schema for ResponseFormat.
|
|
"""
|
|
|
|
name: str
|
|
description: Optional[str] = None
|
|
json_schema: Optional[dict[str, Any]] = Field(default=None, alias="schema")
|
|
strict: Optional[bool] = None
|
|
|
|
|
|
class StructuralTagResponseFormat(BaseModel):
|
|
"""
|
|
Structural tag for ResponseFormat.
|
|
"""
|
|
|
|
type: Literal["structural_tag"]
|
|
structures: list[StructuralTag]
|
|
triggers: list[str]
|
|
|
|
|
|
class ResponseFormat(BaseModel):
|
|
"""
|
|
response_format type.
|
|
"""
|
|
|
|
type: Literal["text", "json_object", "json_schema"]
|
|
json_schema: Optional[JsonSchemaResponseFormat] = None
|
|
|
|
|
|
AnyResponseFormat = Union[ResponseFormat, StructuralTagResponseFormat]
|
|
|
|
|
|
class CompletionRequest(BaseModel):
|
|
"""
|
|
Completion request to the engine.
|
|
"""
|
|
|
|
# Ordered by official OpenAI API documentation
|
|
# https://platform.openai.com/docs/api-reference/completions/create
|
|
model: Optional[str] = "default"
|
|
prompt: Union[List[int], List[List[int]], str, List[str]]
|
|
best_of: Optional[int] = None
|
|
echo: Optional[bool] = False
|
|
frequency_penalty: Optional[float] = None
|
|
logprobs: Optional[int] = None
|
|
max_tokens: Optional[int] = None
|
|
n: int = 1
|
|
presence_penalty: Optional[float] = None
|
|
seed: Optional[int] = None
|
|
stop: Optional[Union[str, List[str]]] = Field(default_factory=list)
|
|
stream: Optional[bool] = False
|
|
stream_options: Optional[StreamOptions] = None
|
|
suffix: Optional[dict] = None
|
|
temperature: Optional[float] = None
|
|
top_p: Optional[float] = None
|
|
user: Optional[str] = None
|
|
|
|
# doc: begin-completion-sampling-params
|
|
top_k: Optional[int] = None
|
|
min_p: Optional[float] = None
|
|
repetition_penalty: Optional[float] = None
|
|
stop_token_ids: Optional[List[int]] = Field(default_factory=list)
|
|
min_tokens: Optional[int] = None
|
|
include_stop_str_in_output: Optional[bool] = False
|
|
bad_words: Optional[List[str]] = None
|
|
# doc: end-completion-sampling-params
|
|
|
|
# doc: start-completion-extra-params
|
|
response_format: Optional[AnyResponseFormat] = None
|
|
guided_json: Optional[Union[str, dict, BaseModel]] = None
|
|
guided_regex: Optional[str] = None
|
|
guided_choice: Optional[list[str]] = None
|
|
guided_grammar: Optional[str] = None
|
|
|
|
max_streaming_response_tokens: Optional[int] = None
|
|
return_token_ids: Optional[bool] = None
|
|
prompt_token_ids: Optional[List[int]] = None
|
|
# doc: end-completion-extra-params
|
|
|
|
def to_dict_for_infer(self, request_id=None, prompt=None):
|
|
"""
|
|
Convert the request parameters into a dictionary
|
|
|
|
Returns:
|
|
dict: request parameters in dict format
|
|
"""
|
|
req_dict = {}
|
|
if request_id is not None:
|
|
req_dict["request_id"] = request_id
|
|
|
|
# parse request model into dict
|
|
if self.suffix is not None:
|
|
for key, value in self.suffix.items():
|
|
req_dict[key] = value
|
|
for key, value in self.dict().items():
|
|
if value is not None:
|
|
req_dict[key] = value
|
|
|
|
if prompt is not None:
|
|
req_dict["prompt"] = prompt
|
|
|
|
if "prompt_token_ids" in req_dict:
|
|
if "prompt" in req_dict:
|
|
del req_dict["prompt"]
|
|
else:
|
|
assert len(prompt) > 0
|
|
|
|
guided_json_object = None
|
|
if self.response_format is not None:
|
|
if self.response_format.type == "json_object":
|
|
guided_json_object = True
|
|
elif self.response_format.type == "json_schema":
|
|
json_schema = self.response_format.json_schema.json_schema
|
|
assert json_schema is not None, "response_format.json_schema can not be None"
|
|
if isinstance(json_schema, (BaseModel, type(BaseModel))):
|
|
self.guided_json = json_schema.model_json_schema()
|
|
else:
|
|
self.guided_json = json_schema
|
|
|
|
if guided_json_object:
|
|
req_dict["guided_json_object"] = guided_json_object
|
|
|
|
guided_schema = [
|
|
"guided_json",
|
|
"guided_regex",
|
|
"guided_choice",
|
|
"guided_grammar",
|
|
"structural_tag",
|
|
]
|
|
for key in guided_schema:
|
|
item = getattr(self, key, None)
|
|
if item is not None:
|
|
req_dict[key] = item
|
|
|
|
return req_dict
|
|
|
|
@model_validator(mode="before")
|
|
@classmethod
|
|
def validate_stream_options(cls, data):
|
|
"""
|
|
Validate stream options
|
|
"""
|
|
if data.get("stream_options") and not data.get("stream"):
|
|
raise ValueError("Stream options can only be defined when `stream=True`.")
|
|
|
|
guided_count = sum(
|
|
[
|
|
"guided_json" in data and data["guided_json"] is not None,
|
|
"guided_regex" in data and data["guided_regex"] is not None,
|
|
"guided_choice" in data and data["guided_choice"] is not None,
|
|
"guided_grammar" in data and data["guided_grammar"] is not None,
|
|
]
|
|
)
|
|
|
|
if guided_count > 1:
|
|
raise ValueError(
|
|
"You can only use one kind of guided decoding "
|
|
"('guided_json', 'guided_regex', 'guided_choice', 'guided_grammar')."
|
|
)
|
|
|
|
return data
|
|
|
|
|
|
class ChatCompletionRequest(BaseModel):
|
|
"""
|
|
Chat completion request to the engine.
|
|
"""
|
|
|
|
# Ordered by official OpenAI API documentation
|
|
# https://platform.openai.com/docs/api-reference/chat/create
|
|
messages: Union[List[Any], List[int]]
|
|
tools: Optional[List[ChatCompletionToolsParam]] = None
|
|
model: Optional[str] = "default"
|
|
frequency_penalty: Optional[float] = None
|
|
logprobs: Optional[bool] = False
|
|
top_logprobs: Optional[int] = 0
|
|
# remove max_tokens when field is removed from OpenAI API
|
|
max_tokens: Optional[int] = Field(
|
|
default=None,
|
|
deprecated="max_tokens is deprecated in favor of the max_completion_tokens field",
|
|
)
|
|
max_completion_tokens: Optional[int] = None
|
|
n: Optional[int] = 1
|
|
presence_penalty: Optional[float] = None
|
|
seed: Optional[int] = None
|
|
stop: Optional[Union[str, List[str]]] = Field(default_factory=list)
|
|
stream: Optional[bool] = False
|
|
stream_options: Optional[StreamOptions] = None
|
|
temperature: Optional[float] = None
|
|
top_p: Optional[float] = None
|
|
user: Optional[str] = None
|
|
metadata: Optional[dict] = None
|
|
response_format: Optional[AnyResponseFormat] = None
|
|
|
|
# doc: begin-chat-completion-sampling-params
|
|
top_k: Optional[int] = None
|
|
min_p: Optional[float] = None
|
|
min_tokens: Optional[int] = None
|
|
include_stop_str_in_output: Optional[bool] = False
|
|
bad_words: Optional[List[str]] = None
|
|
repetition_penalty: Optional[float] = None
|
|
stop_token_ids: Optional[List[int]] = Field(default_factory=list)
|
|
# doc: end-chat-completion-sampling-params
|
|
|
|
# doc: start-completion-extra-params
|
|
chat_template_kwargs: Optional[dict] = None
|
|
reasoning_max_tokens: Optional[int] = None
|
|
structural_tag: Optional[str] = None
|
|
guided_json: Optional[Union[str, dict, BaseModel]] = None
|
|
guided_regex: Optional[str] = None
|
|
guided_choice: Optional[list[str]] = None
|
|
guided_grammar: Optional[str] = None
|
|
|
|
return_token_ids: Optional[bool] = None
|
|
prompt_token_ids: Optional[List[int]] = None
|
|
max_streaming_response_tokens: Optional[int] = None
|
|
disable_chat_template: Optional[bool] = False
|
|
# doc: end-chat-completion-extra-params
|
|
|
|
def to_dict_for_infer(self, request_id=None):
|
|
"""
|
|
Convert the request parameters into a dictionary
|
|
|
|
Returns:
|
|
dict: request parameters in dict format
|
|
"""
|
|
req_dict = {}
|
|
if request_id is not None:
|
|
req_dict["request_id"] = request_id
|
|
|
|
req_dict["max_tokens"] = self.max_completion_tokens or self.max_tokens
|
|
req_dict["logprobs"] = self.top_logprobs if self.logprobs else None
|
|
|
|
# parse request model into dict, priority: request params > metadata params
|
|
if self.metadata is not None:
|
|
assert (
|
|
"raw_request" not in self.metadata
|
|
), "The parameter `raw_request` is not supported now, please use completion api instead."
|
|
for key, value in self.metadata.items():
|
|
req_dict[key] = value
|
|
for key, value in self.dict().items():
|
|
if value is not None:
|
|
req_dict[key] = value
|
|
|
|
if "prompt_token_ids" in req_dict:
|
|
if "messages" in req_dict:
|
|
del req_dict["messages"]
|
|
else:
|
|
assert len(self.messages) > 0
|
|
|
|
# If disable_chat_template is set, then the first message in messages will be used as the prompt.
|
|
if self.disable_chat_template:
|
|
req_dict["prompt"] = req_dict["messages"][0]["content"]
|
|
del req_dict["messages"]
|
|
|
|
guided_json_object = None
|
|
if self.response_format is not None:
|
|
if self.response_format.type == "json_object":
|
|
guided_json_object = True
|
|
elif self.response_format.type == "json_schema":
|
|
json_schema = self.response_format.json_schema.json_schema
|
|
assert json_schema is not None, "response_format.json_schema can not be None"
|
|
if isinstance(json_schema, (BaseModel, type(BaseModel))):
|
|
self.guided_json = json_schema.model_json_schema()
|
|
else:
|
|
self.guided_json = json_schema
|
|
elif self.response_format.type == "structural_tag":
|
|
structural_tag = self.response_format
|
|
assert structural_tag is not None and isinstance(structural_tag, StructuralTagResponseFormat)
|
|
self.structural_tag = json.dumps(structural_tag.model_dump(by_alias=True))
|
|
|
|
if guided_json_object:
|
|
req_dict["guided_json_object"] = guided_json_object
|
|
|
|
guided_schema = [
|
|
"guided_json",
|
|
"guided_regex",
|
|
"guided_choice",
|
|
"guided_grammar",
|
|
"structural_tag",
|
|
]
|
|
for key in guided_schema:
|
|
item = getattr(self, key, None)
|
|
if item is not None:
|
|
req_dict[key] = item
|
|
|
|
return req_dict
|
|
|
|
@model_validator(mode="before")
|
|
@classmethod
|
|
def validate_stream_options(cls, data):
|
|
"""
|
|
Validate stream options
|
|
"""
|
|
if data.get("stream_options") and not data.get("stream"):
|
|
raise ValueError("Stream options can only be defined when `stream=True`.")
|
|
|
|
guided_count = sum(
|
|
[
|
|
"guided_json" in data and data["guided_json"] is not None,
|
|
"guided_regex" in data and data["guided_regex"] is not None,
|
|
"guided_choice" in data and data["guided_choice"] is not None,
|
|
"guided_grammar" in data and data["guided_grammar"] is not None,
|
|
"structural_tag" in data and data["structural_tag"] is not None,
|
|
]
|
|
)
|
|
|
|
if guided_count > 1:
|
|
raise ValueError(
|
|
"You can only use one kind of guided decoding "
|
|
"('guided_json', 'guided_regex', 'guided_choice', 'guided_grammar', 'structural_tag')."
|
|
)
|
|
|
|
return data
|
|
|
|
@model_validator(mode="before")
|
|
@classmethod
|
|
def check_logprobs(cls, data):
|
|
|
|
if (top_logprobs := data.get("top_logprobs")) is not None:
|
|
if top_logprobs < 0:
|
|
raise ValueError("`top_logprobs` must be a positive value.")
|
|
|
|
if top_logprobs > 0 and not data.get("logprobs"):
|
|
raise ValueError("when using `top_logprobs`, `logprobs` must be set to true.")
|
|
|
|
return data
|
|
|
|
|
|
class ControlSchedulerRequest(BaseModel):
|
|
"""
|
|
Control scheduler request to the engine.
|
|
"""
|
|
|
|
reset: Optional[bool] = False
|
|
load_shards_num: Optional[int] = None
|
|
reallocate_shard: Optional[bool] = False
|