Files
FastDeploy/fastdeploy/entrypoints/openai/protocol.py
2025-08-14 21:08:49 +08:00

658 lines
19 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
from __future__ import annotations
import json
import time
from typing import Any, Dict, List, Literal, Optional, Union
from pydantic import BaseModel, Field, model_validator
# from openai.types.chat import ChatCompletionMessageParam
# from fastdeploy.entrypoints.chat_utils import ChatCompletionMessageParam
class ErrorResponse(BaseModel):
"""
Error response from OpenAI API.
"""
object: str = "error"
message: str
code: int
class PromptTokenUsageInfo(BaseModel):
"""
Prompt-related token usage info.
"""
cached_tokens: Optional[int] = None
class UsageInfo(BaseModel):
"""
Usage info for a single request.
"""
prompt_tokens: int = 0
total_tokens: int = 0
completion_tokens: Optional[int] = 0
prompt_tokens_details: Optional[PromptTokenUsageInfo] = None
class FunctionCall(BaseModel):
"""
Function call.
"""
name: str
arguments: str
class ToolCall(BaseModel):
"""
Tool call.
"""
id: str = None
type: Literal["function"] = "function"
function: FunctionCall
class DeltaFunctionCall(BaseModel):
"""
Delta function call.
"""
name: Optional[str] = None
arguments: Optional[str] = None
# a tool call delta where everything is optional
class DeltaToolCall(BaseModel):
"""
Delta tool call.
"""
id: Optional[str] = None
type: Optional[Literal["function"]] = None
index: int
function: Optional[DeltaFunctionCall] = None
class ExtractedToolCallInformation(BaseModel):
# indicate if tools were called
tools_called: bool
# extracted tool calls
tool_calls: Optional[list[ToolCall]] = None
# content - per OpenAI spec, content AND tool calls can be returned rarely
# But some models will do this intentionally
content: Optional[str] = None
class FunctionDefinition(BaseModel):
"""
Function definition.
"""
name: str
description: Optional[str] = None
parameters: Optional[dict[str, Any]] = None
class ChatCompletionToolsParam(BaseModel):
"""
Chat completion tools parameter.
"""
type: Literal["function"] = "function"
function: FunctionDefinition
class ChatMessage(BaseModel):
"""
Chat message.
"""
role: str
content: str
reasoning_content: Optional[str] = None
tool_calls: Optional[List[DeltaToolCall | ToolCall]] = None
prompt_token_ids: Optional[List[int]] = None
completion_token_ids: Optional[List[int]] = None
text_after_process: Optional[str] = None
raw_prediction: Optional[str] = None
class ChatCompletionResponseChoice(BaseModel):
"""
Chat completion response choice.
"""
index: int
message: ChatMessage
logprobs: Optional[LogProbs] = None
finish_reason: Optional[Literal["stop", "length", "tool_calls", "recover_stop"]]
class ChatCompletionResponse(BaseModel):
"""
Chat completion response.
"""
id: str
object: str = "chat.completion"
created: int = Field(default_factory=lambda: int(time.time()))
model: str
choices: List[ChatCompletionResponseChoice]
usage: UsageInfo
class LogProbEntry(BaseModel):
"""
Log probability entry.
"""
token: str
logprob: float
bytes: Optional[List[int]] = None
top_logprobs: Optional[List[LogProbEntry]] = None
class LogProbs(BaseModel):
"""
LogProbs.
"""
content: Optional[List[LogProbEntry]] = None
refusal: Optional[Union[str, None]] = None
class DeltaMessage(BaseModel):
"""
Delta message for chat completion stream response.
"""
role: Optional[str] = None
content: Optional[str] = None
prompt_token_ids: Optional[List[int]] = None
completion_token_ids: Optional[List[int]] = None
reasoning_content: Optional[str] = None
tool_calls: Optional[List[DeltaToolCall | ToolCall]] = None
text_after_process: Optional[str] = None
raw_prediction: Optional[str] = None
class ChatCompletionResponseStreamChoice(BaseModel):
"""
Chat completion response choice for stream response.
"""
index: int
delta: DeltaMessage
logprobs: Optional[LogProbs] = None
finish_reason: Optional[Literal["stop", "length", "tool_calls"]] = None
arrival_time: Optional[float] = None
class ChatCompletionStreamResponse(BaseModel):
"""
Chat completion response for stream response.
"""
id: str
object: str = "chat.completion.chunk"
created: int = Field(default_factory=lambda: int(time.time()))
model: str
choices: List[ChatCompletionResponseStreamChoice]
usage: Optional[UsageInfo] = None
class CompletionResponseChoice(BaseModel):
"""
Completion response choice.
"""
index: int
text: str
prompt_token_ids: Optional[List[int]] = None
completion_token_ids: Optional[List[int]] = None
text_after_process: Optional[str] = None
raw_prediction: Optional[str] = None
arrival_time: Optional[float] = None
logprobs: Optional[CompletionLogprobs] = None
reasoning_content: Optional[str] = None
finish_reason: Optional[Literal["stop", "length", "tool_calls"]]
tool_calls: Optional[List[DeltaToolCall | ToolCall]] = None
class CompletionResponse(BaseModel):
"""
Completion response.
"""
id: str
object: str = "text_completion"
created: int = Field(default_factory=lambda: int(time.time()))
model: str
choices: List[CompletionResponseChoice]
usage: UsageInfo
class CompletionLogprobs(BaseModel):
"""
Completion logprobs.
"""
tokens: Optional[List[str]] = None
token_logprobs: Optional[List[float]] = None
top_logprobs: Optional[List[Dict]] = None
text_offset: Optional[List[int]] = None
class CompletionResponseStreamChoice(BaseModel):
"""
Completion response choice for stream response.
"""
index: int
text: str
arrival_time: float = None
logprobs: Optional[CompletionLogprobs] = None
prompt_token_ids: Optional[List[int]] = None
completion_token_ids: Optional[List[int]] = None
text_after_process: Optional[str] = None
raw_prediction: Optional[str] = None
reasoning_content: Optional[str] = None
finish_reason: Optional[Literal["stop", "length", "tool_calls"]] = None
tool_calls: Optional[List[DeltaToolCall | ToolCall]] = None
class CompletionStreamResponse(BaseModel):
"""
Completion response for stream response.
"""
id: str
object: str = "text_completion"
created: int = Field(default_factory=lambda: int(time.time()))
model: str
choices: List[CompletionResponseStreamChoice]
usage: Optional[UsageInfo] = None
class StreamOptions(BaseModel):
"""
Stream options.
"""
include_usage: Optional[bool] = True
continuous_usage_stats: Optional[bool] = False
class StructuralTag(BaseModel):
"""
Structural tag.
"""
begin: str
structural_tag_schema: Optional[dict[str, Any]] = Field(default=None, alias="schema")
end: str
class JsonSchemaResponseFormat(BaseModel):
"""
Json schema for ResponseFormat.
"""
name: str
description: Optional[str] = None
json_schema: Optional[dict[str, Any]] = Field(default=None, alias="schema")
strict: Optional[bool] = None
class StructuralTagResponseFormat(BaseModel):
"""
Structural tag for ResponseFormat.
"""
type: Literal["structural_tag"]
structures: list[StructuralTag]
triggers: list[str]
class ResponseFormat(BaseModel):
"""
response_format type.
"""
type: Literal["text", "json_object", "json_schema"]
json_schema: Optional[JsonSchemaResponseFormat] = None
AnyResponseFormat = Union[ResponseFormat, StructuralTagResponseFormat]
class CompletionRequest(BaseModel):
"""
Completion request to the engine.
"""
# Ordered by official OpenAI API documentation
# https://platform.openai.com/docs/api-reference/completions/create
model: Optional[str] = "default"
prompt: Union[List[int], List[List[int]], str, List[str]]
best_of: Optional[int] = None
echo: Optional[bool] = False
frequency_penalty: Optional[float] = None
logprobs: Optional[int] = None
max_tokens: Optional[int] = None
n: int = 1
presence_penalty: Optional[float] = None
seed: Optional[int] = None
stop: Optional[Union[str, List[str]]] = Field(default_factory=list)
stream: Optional[bool] = False
stream_options: Optional[StreamOptions] = None
suffix: Optional[dict] = None
temperature: Optional[float] = None
top_p: Optional[float] = None
user: Optional[str] = None
# doc: begin-completion-sampling-params
top_k: Optional[int] = None
min_p: Optional[float] = None
repetition_penalty: Optional[float] = None
stop_token_ids: Optional[List[int]] = Field(default_factory=list)
min_tokens: Optional[int] = None
include_stop_str_in_output: Optional[bool] = False
bad_words: Optional[List[str]] = None
# doc: end-completion-sampling-params
# doc: start-completion-extra-params
response_format: Optional[AnyResponseFormat] = None
guided_json: Optional[Union[str, dict, BaseModel]] = None
guided_regex: Optional[str] = None
guided_choice: Optional[list[str]] = None
guided_grammar: Optional[str] = None
max_streaming_response_tokens: Optional[int] = None
return_token_ids: Optional[bool] = None
prompt_token_ids: Optional[List[int]] = None
# doc: end-completion-extra-params
def to_dict_for_infer(self, request_id=None, prompt=None):
"""
Convert the request parameters into a dictionary
Returns:
dict: request parameters in dict format
"""
req_dict = {}
if request_id is not None:
req_dict["request_id"] = request_id
# parse request model into dict
if self.suffix is not None:
for key, value in self.suffix.items():
req_dict[key] = value
for key, value in self.dict().items():
if value is not None:
req_dict[key] = value
if prompt is not None:
req_dict["prompt"] = prompt
if "prompt_token_ids" in req_dict:
if "prompt" in req_dict:
del req_dict["prompt"]
else:
assert len(prompt) > 0
guided_json_object = None
if self.response_format is not None:
if self.response_format.type == "json_object":
guided_json_object = True
elif self.response_format.type == "json_schema":
json_schema = self.response_format.json_schema.json_schema
assert json_schema is not None, "response_format.json_schema can not be None"
if isinstance(json_schema, (BaseModel, type(BaseModel))):
self.guided_json = json_schema.model_json_schema()
else:
self.guided_json = json_schema
if guided_json_object:
req_dict["guided_json_object"] = guided_json_object
guided_schema = [
"guided_json",
"guided_regex",
"guided_choice",
"guided_grammar",
"structural_tag",
]
for key in guided_schema:
item = getattr(self, key, None)
if item is not None:
req_dict[key] = item
return req_dict
@model_validator(mode="before")
@classmethod
def validate_stream_options(cls, data):
"""
Validate stream options
"""
if data.get("stream_options") and not data.get("stream"):
raise ValueError("Stream options can only be defined when `stream=True`.")
guided_count = sum(
[
"guided_json" in data and data["guided_json"] is not None,
"guided_regex" in data and data["guided_regex"] is not None,
"guided_choice" in data and data["guided_choice"] is not None,
"guided_grammar" in data and data["guided_grammar"] is not None,
]
)
if guided_count > 1:
raise ValueError(
"You can only use one kind of guided decoding "
"('guided_json', 'guided_regex', 'guided_choice', 'guided_grammar')."
)
return data
class ChatCompletionRequest(BaseModel):
"""
Chat completion request to the engine.
"""
# Ordered by official OpenAI API documentation
# https://platform.openai.com/docs/api-reference/chat/create
messages: Union[List[Any], List[int]]
tools: Optional[List[ChatCompletionToolsParam]] = None
model: Optional[str] = "default"
frequency_penalty: Optional[float] = None
logprobs: Optional[bool] = False
top_logprobs: Optional[int] = 0
# remove max_tokens when field is removed from OpenAI API
max_tokens: Optional[int] = Field(
default=None,
deprecated="max_tokens is deprecated in favor of the max_completion_tokens field",
)
max_completion_tokens: Optional[int] = None
n: Optional[int] = 1
presence_penalty: Optional[float] = None
seed: Optional[int] = None
stop: Optional[Union[str, List[str]]] = Field(default_factory=list)
stream: Optional[bool] = False
stream_options: Optional[StreamOptions] = None
temperature: Optional[float] = None
top_p: Optional[float] = None
user: Optional[str] = None
metadata: Optional[dict] = None
response_format: Optional[AnyResponseFormat] = None
# doc: begin-chat-completion-sampling-params
top_k: Optional[int] = None
min_p: Optional[float] = None
min_tokens: Optional[int] = None
include_stop_str_in_output: Optional[bool] = False
bad_words: Optional[List[str]] = None
repetition_penalty: Optional[float] = None
stop_token_ids: Optional[List[int]] = Field(default_factory=list)
# doc: end-chat-completion-sampling-params
# doc: start-completion-extra-params
chat_template_kwargs: Optional[dict] = None
reasoning_max_tokens: Optional[int] = None
structural_tag: Optional[str] = None
guided_json: Optional[Union[str, dict, BaseModel]] = None
guided_regex: Optional[str] = None
guided_choice: Optional[list[str]] = None
guided_grammar: Optional[str] = None
return_token_ids: Optional[bool] = None
prompt_token_ids: Optional[List[int]] = None
max_streaming_response_tokens: Optional[int] = None
disable_chat_template: Optional[bool] = False
# doc: end-chat-completion-extra-params
def to_dict_for_infer(self, request_id=None):
"""
Convert the request parameters into a dictionary
Returns:
dict: request parameters in dict format
"""
req_dict = {}
if request_id is not None:
req_dict["request_id"] = request_id
req_dict["max_tokens"] = self.max_completion_tokens or self.max_tokens
req_dict["logprobs"] = self.top_logprobs if self.logprobs else None
# parse request model into dict, priority: request params > metadata params
if self.metadata is not None:
assert (
"raw_request" not in self.metadata
), "The parameter `raw_request` is not supported now, please use completion api instead."
for key, value in self.metadata.items():
req_dict[key] = value
for key, value in self.dict().items():
if value is not None:
req_dict[key] = value
if "prompt_token_ids" in req_dict:
if "messages" in req_dict:
del req_dict["messages"]
else:
assert len(self.messages) > 0
# If disable_chat_template is set, then the first message in messages will be used as the prompt.
if self.disable_chat_template:
req_dict["prompt"] = req_dict["messages"][0]["content"]
del req_dict["messages"]
guided_json_object = None
if self.response_format is not None:
if self.response_format.type == "json_object":
guided_json_object = True
elif self.response_format.type == "json_schema":
json_schema = self.response_format.json_schema.json_schema
assert json_schema is not None, "response_format.json_schema can not be None"
if isinstance(json_schema, (BaseModel, type(BaseModel))):
self.guided_json = json_schema.model_json_schema()
else:
self.guided_json = json_schema
elif self.response_format.type == "structural_tag":
structural_tag = self.response_format
assert structural_tag is not None and isinstance(structural_tag, StructuralTagResponseFormat)
self.structural_tag = json.dumps(structural_tag.model_dump(by_alias=True))
if guided_json_object:
req_dict["guided_json_object"] = guided_json_object
guided_schema = [
"guided_json",
"guided_regex",
"guided_choice",
"guided_grammar",
"structural_tag",
]
for key in guided_schema:
item = getattr(self, key, None)
if item is not None:
req_dict[key] = item
return req_dict
@model_validator(mode="before")
@classmethod
def validate_stream_options(cls, data):
"""
Validate stream options
"""
if data.get("stream_options") and not data.get("stream"):
raise ValueError("Stream options can only be defined when `stream=True`.")
guided_count = sum(
[
"guided_json" in data and data["guided_json"] is not None,
"guided_regex" in data and data["guided_regex"] is not None,
"guided_choice" in data and data["guided_choice"] is not None,
"guided_grammar" in data and data["guided_grammar"] is not None,
"structural_tag" in data and data["structural_tag"] is not None,
]
)
if guided_count > 1:
raise ValueError(
"You can only use one kind of guided decoding "
"('guided_json', 'guided_regex', 'guided_choice', 'guided_grammar', 'structural_tag')."
)
return data
@model_validator(mode="before")
@classmethod
def check_logprobs(cls, data):
if (top_logprobs := data.get("top_logprobs")) is not None:
if top_logprobs < 0:
raise ValueError("`top_logprobs` must be a positive value.")
if top_logprobs > 0 and not data.get("logprobs"):
raise ValueError("when using `top_logprobs`, `logprobs` must be set to true.")
return data
class ControlSchedulerRequest(BaseModel):
"""
Control scheduler request to the engine.
"""
reset: Optional[bool] = False
load_shards_num: Optional[int] = None
reallocate_shard: Optional[bool] = False