mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-12-24 13:28:13 +08:00
Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
* mm prefix cache * add _revert_match_blocks * update code * update code * update code * fix bugs * add test case * fix bug * update code * update reserved_dec_block_ids
107 lines
3.9 KiB
Python
107 lines
3.9 KiB
Python
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
from dataclasses import asdict
|
|
from types import SimpleNamespace
|
|
|
|
from fastdeploy.cache_manager.cache_data import BlockNode
|
|
from fastdeploy.cache_manager.prefix_cache_manager import PrefixCacheManager
|
|
from fastdeploy.config import CacheConfig, FDConfig, ParallelConfig
|
|
from fastdeploy.engine.args_utils import EngineArgs
|
|
from fastdeploy.engine.request import ImagePosition, Request
|
|
from fastdeploy.scheduler import SchedulerConfig
|
|
|
|
|
|
def make_prefix_cache_manager(max_num_seqs, enable_mm=False, num_gpu_blocks_override=100, max_num_batched_tokens=3200):
|
|
engine_args = EngineArgs(
|
|
max_num_seqs=max_num_seqs,
|
|
num_gpu_blocks_override=num_gpu_blocks_override,
|
|
max_num_batched_tokens=max_num_batched_tokens,
|
|
)
|
|
args = asdict(engine_args)
|
|
cache_cfg = CacheConfig(args)
|
|
model_cfg = SimpleNamespace(enable_mm=enable_mm, max_model_len=8192)
|
|
speculative_cfg = SimpleNamespace(method=None)
|
|
model_cfg.print = print
|
|
cache_cfg.bytes_per_layer_per_block = 1
|
|
parallel_cfg = ParallelConfig(args)
|
|
scheduler_cfg = SchedulerConfig()
|
|
graph_opt_cfg = engine_args.create_graph_optimization_config()
|
|
fd_config = FDConfig(
|
|
model_config=model_cfg,
|
|
cache_config=cache_cfg,
|
|
parallel_config=parallel_cfg,
|
|
graph_opt_config=graph_opt_cfg,
|
|
speculative_config=speculative_cfg,
|
|
scheduler_config=scheduler_cfg,
|
|
)
|
|
return PrefixCacheManager(config=fd_config, tensor_parallel_size=8, splitwise_role="mixed")
|
|
|
|
|
|
def test_revert_match_blocks():
|
|
block_size = 64
|
|
cache_manager = make_prefix_cache_manager(max_num_seqs=3, enable_mm=True, num_gpu_blocks_override=100)
|
|
|
|
multimodal_inputs = {
|
|
"mm_positions": [ImagePosition(offset=120, length=1200)],
|
|
"mm_hashes": ["image1"],
|
|
}
|
|
req1_dict = {
|
|
"request_id": "req1",
|
|
"prompt_token_ids": [1] * 120 + [-1] * 1200 + [2] * 120,
|
|
"prompt_token_ids_len": 1440,
|
|
"multimodal_inputs": multimodal_inputs,
|
|
}
|
|
request_1 = Request.from_dict(req1_dict)
|
|
matched_token_num = 20 * 64
|
|
match_node_ids = []
|
|
matche_nodes = []
|
|
match_gpu_block_ids = []
|
|
match_cpu_block_ids = []
|
|
for idx in range(20):
|
|
node_id = idx + 10
|
|
block = BlockNode(node_id, [], 0, 0, idx, 0, None, None, None)
|
|
match_node_ids.append(node_id)
|
|
matche_nodes.append(block)
|
|
match_gpu_block_ids.append(idx)
|
|
match_cpu_block_ids.append(match_gpu_block_ids.pop())
|
|
match_cpu_block_ids.append(match_gpu_block_ids.pop())
|
|
gpu_match_token_num = len(match_gpu_block_ids) * block_size
|
|
cpu_match_token_num = len(match_cpu_block_ids) * block_size
|
|
|
|
(
|
|
gpu_match_token_num,
|
|
cpu_match_token_num,
|
|
current_match_node,
|
|
) = cache_manager._revert_match_blocks(
|
|
request=request_1,
|
|
matched_token_num=matched_token_num,
|
|
block_size=block_size,
|
|
chunk_idx=0,
|
|
match_node_ids=match_node_ids,
|
|
matche_nodes=matche_nodes,
|
|
match_gpu_block_ids=match_gpu_block_ids,
|
|
match_cpu_block_ids=match_cpu_block_ids,
|
|
gpu_match_token_num=gpu_match_token_num,
|
|
cpu_match_token_num=cpu_match_token_num,
|
|
swap_node_ids=[],
|
|
)
|
|
|
|
assert match_gpu_block_ids == [0, 1]
|
|
assert match_cpu_block_ids == []
|
|
assert gpu_match_token_num == 120
|
|
assert cpu_match_token_num == 0
|
|
assert match_node_ids == [10, 11]
|