mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00

* Add Huawei Ascend NPU deploy through PaddleLite CANN * Add NNAdapter interface for paddlelite * Modify Huawei Ascend Cmake * Update way for compiling Huawei Ascend NPU deployment * remove UseLiteBackend in UseCANN * Support compile python whlee * Change names of nnadapter API * Add nnadapter pybind and remove useless API * Support Python deployment on Huawei Ascend NPU * Add models suppor for ascend * Add PPOCR rec reszie for ascend * fix conflict for ascend * Rename CANN to Ascend * Rename CANN to Ascend * Improve ascend * fix ascend bug * improve ascend docs * improve ascend docs * improve ascend docs * Improve Ascend * Improve Ascend * Move ascend python demo * Imporve ascend * Improve ascend * Improve ascend * Improve ascend * Improve ascend * Imporve ascend * Imporve ascend * Improve ascend * acc eval script * acc eval * remove acc_eval from branch huawei * Add detection and segmentation examples for Ascend deployment * Add detection and segmentation examples for Ascend deployment * Add PPOCR example for ascend deploy * Imporve paddle lite compiliation * Add FlyCV doc * Add FlyCV doc * Add FlyCV doc * Imporve Ascend docs * Imporve Ascend docs * Improve PPOCR example
108 lines
4.0 KiB
C++
Executable File
108 lines
4.0 KiB
C++
Executable File
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/vision.h"
|
|
#ifdef WIN32
|
|
const char sep = '\\';
|
|
#else
|
|
const char sep = '/';
|
|
#endif
|
|
|
|
void InitAndInfer(const std::string& det_model_dir, const std::string& cls_model_dir, const std::string& rec_model_dir, const std::string& rec_label_file, const std::string& image_file, const fastdeploy::RuntimeOption& option) {
|
|
auto det_model_file = det_model_dir + sep + "inference.pdmodel";
|
|
auto det_params_file = det_model_dir + sep + "inference.pdiparams";
|
|
|
|
auto cls_model_file = cls_model_dir + sep + "inference.pdmodel";
|
|
auto cls_params_file = cls_model_dir + sep + "inference.pdiparams";
|
|
|
|
auto rec_model_file = rec_model_dir + sep + "inference.pdmodel";
|
|
auto rec_params_file = rec_model_dir + sep + "inference.pdiparams";
|
|
|
|
auto det_option = option;
|
|
auto cls_option = option;
|
|
auto rec_option = option;
|
|
|
|
auto det_model = fastdeploy::vision::ocr::DBDetector(det_model_file, det_params_file, det_option);
|
|
auto cls_model = fastdeploy::vision::ocr::Classifier(cls_model_file, cls_params_file, cls_option);
|
|
auto rec_model = fastdeploy::vision::ocr::Recognizer(rec_model_file, rec_params_file, rec_label_file, rec_option);
|
|
|
|
// Users could enable static shape infer for rec model when deploy PP-OCR on hardware
|
|
// which can not support dynamic shape infer well, like Huawei Ascend series.
|
|
rec_model.GetPreprocessor().SetStaticShapeInfer(true);
|
|
|
|
assert(det_model.Initialized());
|
|
assert(cls_model.Initialized());
|
|
assert(rec_model.Initialized());
|
|
|
|
// The classification model is optional, so the PP-OCR can also be connected in series as follows
|
|
// auto ppocr_v2 = fastdeploy::pipeline::PPOCRv2(&det_model, &rec_model);
|
|
auto ppocr_v2 = fastdeploy::pipeline::PPOCRv2(&det_model, &cls_model, &rec_model);
|
|
|
|
// When users enable static shape infer for rec model, the batch size of cls and rec model must to be set to 1.
|
|
ppocr_v2.SetClsBatchSize(1);
|
|
ppocr_v2.SetRecBatchSize(1);
|
|
|
|
if(!ppocr_v2.Initialized()){
|
|
std::cerr << "Failed to initialize PP-OCR." << std::endl;
|
|
return;
|
|
}
|
|
|
|
auto im = cv::imread(image_file);
|
|
|
|
fastdeploy::vision::OCRResult result;
|
|
if (!ppocr_v2.Predict(im, &result)) {
|
|
std::cerr << "Failed to predict." << std::endl;
|
|
return;
|
|
}
|
|
|
|
std::cout << result.Str() << std::endl;
|
|
|
|
auto vis_im = fastdeploy::vision::VisOcr(im, result);
|
|
cv::imwrite("vis_result.jpg", vis_im);
|
|
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
|
}
|
|
|
|
int main(int argc, char* argv[]) {
|
|
if (argc < 7) {
|
|
std::cout << "Usage: infer_demo path/to/det_model path/to/cls_model "
|
|
"path/to/rec_model path/to/rec_label_file path/to/image "
|
|
"run_option, "
|
|
"e.g ./infer_demo ./ch_PP-OCRv2_det_infer "
|
|
"./ch_ppocr_mobile_v2.0_cls_infer ./ch_PP-OCRv2_rec_infer "
|
|
"./ppocr_keys_v1.txt ./12.jpg 0"
|
|
<< std::endl;
|
|
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
|
|
"with ascend."
|
|
<< std::endl;
|
|
return -1;
|
|
}
|
|
|
|
fastdeploy::RuntimeOption option;
|
|
int flag = std::atoi(argv[6]);
|
|
|
|
if (flag == 0) {
|
|
option.UseCpu();
|
|
} else if (flag == 1) {
|
|
option.UseAscend();
|
|
}
|
|
|
|
std::string det_model_dir = argv[1];
|
|
std::string cls_model_dir = argv[2];
|
|
std::string rec_model_dir = argv[3];
|
|
std::string rec_label_file = argv[4];
|
|
std::string test_image = argv[5];
|
|
InitAndInfer(det_model_dir, cls_model_dir, rec_model_dir, rec_label_file, test_image, option);
|
|
return 0;
|
|
}
|