mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-26 20:41:53 +08:00

Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
* support cudagraph use shared pool * add envs * change CUDAGRAPH_POOL_ID to int * change CUDAGRAPH_POOL_ID to use_memory_pool * unify use_unique_memory_pool * fix use_unique_memory_pool
243 lines
9.4 KiB
Python
243 lines
9.4 KiB
Python
"""
|
||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License"
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
"""
|
||
|
||
from contextlib import contextmanager
|
||
from dataclasses import dataclass, field
|
||
from typing import Callable, Dict, List, Optional
|
||
|
||
import paddle.jit.dy2static.utils as jit_utils
|
||
import paddle.nn.layer
|
||
from paddle.base.core import CUDAGraph
|
||
from paddle.device.cuda import graphs
|
||
|
||
from fastdeploy import envs
|
||
from fastdeploy.config import FDConfig
|
||
from fastdeploy.distributed.communication import capture_custom_allreduce
|
||
from fastdeploy.utils import get_logger
|
||
|
||
logger = get_logger("cudagrpah_piecewise_backend", "cudagraph_piecewise_backend.log")
|
||
|
||
|
||
@dataclass
|
||
class ConcreteSizeEntry:
|
||
"""Record the concrete information corresponding to the current shape(num_tokens)"""
|
||
|
||
# Concrete shape
|
||
real_shape: int
|
||
# The size is in cudagraph_capture_sizes
|
||
use_cudagraph: bool = True
|
||
# Has runtime-bs been captured before
|
||
captured: bool = False
|
||
|
||
# Need to be captured callable object(dynamic graph or static grpah backend)
|
||
runnable: Callable = None # type: ignore
|
||
# Number of completed warmups
|
||
num_finished_warmup: int = 0
|
||
# Captured cuda graph object corresponding to the current real shape
|
||
cuda_graph: Optional[graphs.CUDAGraph] = None
|
||
# Output buffers of cudagraph
|
||
output_buffers: List[Optional[paddle.Tensor]] = field(default_factory=list)
|
||
|
||
|
||
class Dy2StCudaGraphManager:
|
||
def __init__(self):
|
||
|
||
self.state = jit_utils.CUDAGraphState.DISABLE
|
||
self.captured_batch_size = set()
|
||
self.batch_size = -1
|
||
|
||
def run_impl(self, original_run_impl, inputs, parameters, attrs):
|
||
|
||
run_state = self.state
|
||
prog_attrs, cuda_graph_attrs = attrs
|
||
if run_state == jit_utils.CUDAGraphState.REPLAY:
|
||
if self.batch_size not in self.captured_batch_size:
|
||
run_state = jit_utils.CUDAGraphState.DISABLE
|
||
elif run_state == jit_utils.CUDAGraphState.CAPTURE:
|
||
self.captured_batch_size.add(self.batch_size)
|
||
|
||
cuda_graph_attrs |= {
|
||
"cuda_graph_state": run_state,
|
||
"cuda_graph_dispatch_key": self.batch_size if run_state != jit_utils.CUDAGraphState.DISABLE else 0,
|
||
}
|
||
return original_run_impl(inputs, parameters, (prog_attrs, cuda_graph_attrs))
|
||
|
||
@contextmanager
|
||
def run_impl_guard(self):
|
||
with paddle.jit.dy2static.pir_partial_program.replace_run_impl_guard(
|
||
self.run_impl,
|
||
):
|
||
yield
|
||
|
||
|
||
class CudaGraphPiecewiseBackend:
|
||
"""Manage the capture and replay of CUDA graphs at the subgraph level."""
|
||
|
||
def __init__(self, fd_config: FDConfig, runnable: Callable):
|
||
self.fd_config = fd_config
|
||
self.runnable = runnable
|
||
self.cudagraph_capture_sizes = fd_config.graph_opt_config.cudagraph_capture_sizes
|
||
self.warm_up_size = fd_config.graph_opt_config.cudagraph_num_of_warmups
|
||
self.real_shape_to_captured_size = fd_config.graph_opt_config.real_shape_to_captured_size
|
||
if self.fd_config.graph_opt_config.use_unique_memory_pool:
|
||
self.unique_memory_pool_id = CUDAGraph.gen_new_memory_pool_id()
|
||
self._create_entry_dict()
|
||
|
||
self.cuda_graph_manager = None
|
||
if self.fd_config.graph_opt_config.graph_opt_level > 0:
|
||
self.cuda_graph_manager = Dy2StCudaGraphManager()
|
||
|
||
def run_static_model(self, entry: ConcreteSizeEntry, **kwargs):
|
||
|
||
if not entry.captured:
|
||
# Warmup the model
|
||
for n in range(entry.num_finished_warmup, self.warm_up_size):
|
||
entry.num_finished_warmup += 1
|
||
entry.runnable(**kwargs)
|
||
logger.debug(
|
||
f"[CUDA GRAPH] Warm up for batch size {entry.real_shape}, "
|
||
f"finished ({n + 1}/{entry.num_finished_warmup}) times"
|
||
)
|
||
|
||
# Store input addresses for debug
|
||
input_addresses = [x.data_ptr() for (_, x) in kwargs.items() if isinstance(x, paddle.Tensor)]
|
||
entry.input_addresses = input_addresses
|
||
|
||
# Capture
|
||
self.cuda_graph_manager.state = jit_utils.CUDAGraphState.CAPTURE
|
||
self.cuda_graph_manager.batch_size = entry.real_shape
|
||
entry.captured = True
|
||
with self.cuda_graph_manager.run_impl_guard():
|
||
entry.runnable(**kwargs)
|
||
|
||
# Replay
|
||
self.cuda_graph_manager.state = jit_utils.CUDAGraphState.REPLAY
|
||
self.cuda_graph_manager.batch_size = entry.real_shape
|
||
with self.cuda_graph_manager.run_impl_guard():
|
||
return entry.runnable(**kwargs)
|
||
|
||
def __call__(self, **kwargs):
|
||
# Get real shape(all num tokens)
|
||
ids_remove_padding: paddle.Tensor = kwargs["forward_meta"].ids_remove_padding
|
||
real_shape = ids_remove_padding.shape[0]
|
||
padding_real_shape = self.real_shape_to_captured_size[real_shape]
|
||
logger.debug(
|
||
f"[CUDA GRAPH] The actual real shape obtained by CUDAGraph is :{real_shape}, "
|
||
f"The padded shape is :{padding_real_shape}"
|
||
)
|
||
|
||
entry = self.concrete_size_entries.get(padding_real_shape)
|
||
assert entry is not None, f"real shape:{padding_real_shape} is not in cuda graph capture list."
|
||
if entry.runnable is None:
|
||
entry.runnable = self.runnable
|
||
logger.debug(f"[CUDA GRAPH] New entry lazy initialize with real shape {padding_real_shape}")
|
||
|
||
if not entry.use_cudagraph:
|
||
return entry.runnable(**kwargs)
|
||
|
||
if self.fd_config.graph_opt_config.graph_opt_level > 0:
|
||
return self.run_static_model(entry, **kwargs)
|
||
|
||
# Capture a new cuda graph
|
||
if entry.cuda_graph is None:
|
||
# Warmup the model
|
||
for n in range(entry.num_finished_warmup, self.warm_up_size):
|
||
entry.num_finished_warmup += 1
|
||
entry.runnable(**kwargs)
|
||
logger.debug(
|
||
f"[CUDA GRAPH] Warm up for real shape {padding_real_shape}, "
|
||
f"finished ({n + 1}/{entry.num_finished_warmup}) times"
|
||
)
|
||
|
||
# Store input addresses for debug
|
||
input_addresses = [x.data_ptr() for (_, x) in kwargs.items() if isinstance(x, paddle.Tensor)]
|
||
entry.input_addresses = input_addresses
|
||
|
||
new_grpah = (
|
||
graphs.CUDAGraph(pool_id=self.unique_memory_pool_id)
|
||
if self.fd_config.graph_opt_config.use_unique_memory_pool
|
||
else graphs.CUDAGraph()
|
||
)
|
||
paddle.device.synchronize()
|
||
|
||
# Capture
|
||
with capture_custom_allreduce():
|
||
new_grpah.capture_begin()
|
||
outputs = entry.runnable(**kwargs)
|
||
if isinstance(outputs, paddle.Tensor):
|
||
assert outputs is not None
|
||
outputs = [outputs]
|
||
new_grpah.capture_end()
|
||
|
||
# Store output buffer
|
||
entry.cuda_graph = new_grpah
|
||
for output in outputs:
|
||
if output is not None:
|
||
output_buffer = paddle.zeros_like(output)
|
||
output._share_buffer_to(output_buffer)
|
||
output._clear
|
||
entry.output_buffers.append(output_buffer)
|
||
else:
|
||
entry.output_buffers.append(None)
|
||
|
||
paddle.device.synchronize()
|
||
|
||
# For CUDAGraph debug
|
||
# self._save_cudagrpah_dot_files(entry)
|
||
logger.debug(f"[CUDA GRAPH] CUDAGraph captured for real shape {padding_real_shape}")
|
||
|
||
# Replay
|
||
entry.cuda_graph.replay()
|
||
logger.debug(f"[CUDA GRAPH] CUDAGraph replayed for real shape {padding_real_shape}")
|
||
if len(entry.output_buffers) == 1:
|
||
return entry.output_buffers[0]
|
||
return entry.output_buffers
|
||
|
||
def _create_entry_dict(self):
|
||
""" """
|
||
# Runtime real shape -> ConcreteSizeEntry
|
||
self.concrete_size_entries: Dict[int, ConcreteSizeEntry] = {}
|
||
|
||
for shape in self.cudagraph_capture_sizes:
|
||
self.concrete_size_entries[shape] = ConcreteSizeEntry(real_shape=shape)
|
||
|
||
logger.info(
|
||
f"[CUDA GRAPH] CUDAGraph capture list {self.cudagraph_capture_sizes}, " "Created all real shape entry."
|
||
)
|
||
|
||
def clear_graph(self):
|
||
""" """
|
||
# Clear graphs
|
||
for id, entry in self.concrete_size_entries.items():
|
||
if entry.cuda_graph:
|
||
del entry.cuda_graph
|
||
logger.debug(f"[CUDA GRAPH] The CUDAGraph with shape {id} has been cleared.")
|
||
|
||
del self.concrete_size_entries
|
||
paddle.device.cuda.empty_cache()
|
||
|
||
# Create new entrys
|
||
self._create_entry_dict()
|
||
|
||
def _save_cudagrpah_dot_files(self, entry):
|
||
"""Print CUDAGrpah to dot files"""
|
||
log_dir = envs.FD_LOG_DIR
|
||
if entry.cuda_graph:
|
||
entry.cuda_graph.print_to_dot_files(
|
||
f"./{log_dir}/GraphDotFiles/backend{id(self)}_shape{entry.real_shape}",
|
||
1 << 0,
|
||
)
|