Files
FastDeploy/tests/eval_example/test_pptracking.py
ChaoII ba501fd963 [Model] add pptracking model (#357)
* add override mark

* delete some

* recovery

* recovery

* add tracking

* add tracking py_bind and example

* add pptracking

* add pptracking

* iomanip head file

* add opencv_video lib

* add python libs package

Signed-off-by: ChaoII <849453582@qq.com>

* complete comments

Signed-off-by: ChaoII <849453582@qq.com>

* add jdeTracker_ member variable

Signed-off-by: ChaoII <849453582@qq.com>

* add 'FASTDEPLOY_DECL' macro

Signed-off-by: ChaoII <849453582@qq.com>

* remove kwargs params

Signed-off-by: ChaoII <849453582@qq.com>

* [Doc]update pptracking docs

* delete 'ENABLE_PADDLE_FRONTEND' switch

* add pptracking unit test

* update pptracking unit test

Signed-off-by: ChaoII <849453582@qq.com>

* modify test video file path and remove trt test

* update unit test model url

* remove 'FASTDEPLOY_DECL' macro

Signed-off-by: ChaoII <849453582@qq.com>

* fix build python packages about pptracking on win32

Signed-off-by: ChaoII <849453582@qq.com>

Signed-off-by: ChaoII <849453582@qq.com>
Co-authored-by: Jason <jiangjiajun@baidu.com>
2022-10-26 14:27:55 +08:00

90 lines
3.6 KiB
Python

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import fastdeploy as fd
import cv2
import os
import numpy as np
import pickle
def test_pptracking_cpu():
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/pptracking.tgz"
input_url = "https://bj.bcebos.com/paddlehub/fastdeploy/person.mp4"
fd.download_and_decompress(model_url, ".")
fd.download(input_url, ".")
model_path = "pptracking/fairmot_hrnetv2_w18_dlafpn_30e_576x320"
# use default backend
runtime_option = fd.RuntimeOption()
model_file = os.path.join(model_path, "model.pdmodel")
params_file = os.path.join(model_path, "model.pdiparams")
config_file = os.path.join(model_path, "infer_cfg.yml")
model = fd.vision.tracking.PPTracking(model_file, params_file, config_file, runtime_option=runtime_option)
cap = cv2.VideoCapture("./person.mp4")
frame_id = 0
while True:
_, frame = cap.read()
if frame is None:
break
result = model.predict(frame)
# compare diff
expect = pickle.load(open("pptracking/frame" + str(frame_id) + ".pkl", "rb"))
diff_boxes = np.fabs(np.array(expect["boxes"]) - np.array(result.boxes))
diff_scores = np.fabs(np.array(expect["scores"]) - np.array(result.scores))
diff = max(diff_boxes.max(), diff_scores.max())
thres = 1e-05
assert diff < thres, "The label diff is %f, which is bigger than %f" % (diff, thres)
frame_id = frame_id + 1
cv2.waitKey(30)
if frame_id >= 10:
cap.release()
cv2.destroyAllWindows()
break
def test_pptracking_gpu():
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/pptracking.tgz"
input_url = "https://bj.bcebos.com/paddlehub/fastdeploy/person.mp4"
fd.download_and_decompress(model_url, ".")
fd.download(input_url, ".")
model_path = "pptracking/fairmot_hrnetv2_w18_dlafpn_30e_576x320"
runtime_option = fd.RuntimeOption()
runtime_option.use_gpu()
# Not supported trt backend, up to now
# runtime_option.use_trt_backend()
model_file = os.path.join(model_path, "model.pdmodel")
params_file = os.path.join(model_path, "model.pdiparams")
config_file = os.path.join(model_path, "infer_cfg.yml")
model = fd.vision.tracking.PPTracking(model_file, params_file, config_file, runtime_option=runtime_option)
cap = cv2.VideoCapture("./person.mp4")
frame_id = 0
while True:
_, frame = cap.read()
if frame is None:
break
result = model.predict(frame)
# compare diff
expect = pickle.load(open("pptracking/frame" + str(frame_id) + ".pkl", "rb"))
diff_boxes = np.fabs(np.array(expect["boxes"]) - np.array(result.boxes))
diff_scores = np.fabs(np.array(expect["scores"]) - np.array(result.scores))
diff = max(diff_boxes.max(), diff_scores.max())
thres = 1e-05
assert diff < thres, "The label diff is %f, which is bigger than %f" % (diff, thres)
frame_id = frame_id + 1
cv2.waitKey(30)
if frame_id >= 10:
cap.release()
cv2.destroyAllWindows()
break