mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-26 20:41:53 +08:00

* [Feature] add AsyncTokenizerClient * add decode_image * Add response_processors with remote decode support. * [Feature] add tokenizer_base_url startup argument * Revert comment removal and restore original content. * [Feature] Non-streaming requests now support remote image decoding. * Fix parameter type issue in decode_image call. * Keep completion_token_ids when return_token_ids = False. * add copyright
128 lines
4.9 KiB
Python
128 lines
4.9 KiB
Python
"""
|
||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License"
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
"""
|
||
|
||
import unittest
|
||
from typing import List
|
||
from unittest.mock import Mock
|
||
|
||
from fastdeploy.entrypoints.openai.serving_completion import (
|
||
CompletionRequest,
|
||
OpenAIServingCompletion,
|
||
RequestOutput,
|
||
)
|
||
|
||
|
||
class TestOpenAIServingCompletion(unittest.TestCase):
|
||
|
||
def test_calc_finish_reason_tool_calls(self):
|
||
# 创建一个模拟的engine_client,并设置reasoning_parser为"ernie_x1"
|
||
engine_client = Mock()
|
||
engine_client.reasoning_parser = "ernie_x1"
|
||
# 创建一个OpenAIServingCompletion实例
|
||
serving_completion = OpenAIServingCompletion(engine_client, None, "pid", "ips", 360)
|
||
# 创建一个模拟的output,并设置finish_reason为"tool_call"
|
||
output = {"tool_call": "tool_call"}
|
||
# 调用calc_finish_reason方法
|
||
result = serving_completion.calc_finish_reason(None, 100, output, False)
|
||
# 断言结果为"tool_calls"
|
||
assert result == "tool_calls"
|
||
|
||
def test_calc_finish_reason_stop(self):
|
||
# 创建一个模拟的engine_client,并设置reasoning_parser为"ernie_x1"
|
||
engine_client = Mock()
|
||
engine_client.reasoning_parser = "ernie_x1"
|
||
# 创建一个OpenAIServingCompletion实例
|
||
serving_completion = OpenAIServingCompletion(engine_client, None, "pid", "ips", 360)
|
||
# 创建一个模拟的output,并设置finish_reason为其他值
|
||
output = {"finish_reason": "other_reason"}
|
||
# 调用calc_finish_reason方法
|
||
result = serving_completion.calc_finish_reason(None, 100, output, False)
|
||
# 断言结果为"stop"
|
||
assert result == "stop"
|
||
|
||
def test_calc_finish_reason_length(self):
|
||
# 创建一个模拟的engine_client
|
||
engine_client = Mock()
|
||
# 创建一个OpenAIServingCompletion实例
|
||
serving_completion = OpenAIServingCompletion(engine_client, None, "pid", "ips", 360)
|
||
# 创建一个模拟的output
|
||
output = {}
|
||
# 调用calc_finish_reason方法
|
||
result = serving_completion.calc_finish_reason(100, 100, output, False)
|
||
# 断言结果为"length"
|
||
assert result == "length"
|
||
|
||
def test_request_output_to_completion_response(self):
|
||
engine_client = Mock()
|
||
# 创建一个OpenAIServingCompletion实例
|
||
openai_serving_completion = OpenAIServingCompletion(engine_client, None, "pid", "ips", 360)
|
||
final_res_batch: List[RequestOutput] = [
|
||
{
|
||
"outputs": {
|
||
"token_ids": [1, 2, 3],
|
||
"text": " world!",
|
||
"top_logprobs": {
|
||
"a": 0.1,
|
||
"b": 0.2,
|
||
},
|
||
},
|
||
"output_token_ids": 3,
|
||
},
|
||
{
|
||
"outputs": {
|
||
"token_ids": [4, 5, 6],
|
||
"text": " world!",
|
||
"top_logprobs": {
|
||
"a": 0.3,
|
||
"b": 0.4,
|
||
},
|
||
},
|
||
"output_token_ids": 3,
|
||
},
|
||
]
|
||
|
||
request: CompletionRequest = Mock()
|
||
request.prompt = "Hello, world!"
|
||
request.echo = True
|
||
request_id = "test_request_id"
|
||
created_time = 1655136000
|
||
model_name = "test_model"
|
||
prompt_batched_token_ids = [[1, 2, 3], [4, 5, 6]]
|
||
completion_batched_token_ids = [[7, 8, 9], [10, 11, 12]]
|
||
completion_response = openai_serving_completion.request_output_to_completion_response(
|
||
final_res_batch=final_res_batch,
|
||
request=request,
|
||
request_id=request_id,
|
||
created_time=created_time,
|
||
model_name=model_name,
|
||
prompt_batched_token_ids=prompt_batched_token_ids,
|
||
completion_batched_token_ids=completion_batched_token_ids,
|
||
text_after_process_list=["1", "1"],
|
||
)
|
||
|
||
assert completion_response.id == request_id
|
||
assert completion_response.created == created_time
|
||
assert completion_response.model == model_name
|
||
assert len(completion_response.choices) == 2
|
||
|
||
# 验证 choices 的 text 属性
|
||
assert completion_response.choices[0].text == "Hello, world! world!"
|
||
assert completion_response.choices[1].text == "Hello, world! world!"
|
||
|
||
|
||
if __name__ == "__main__":
|
||
unittest.main()
|