Files
FastDeploy/tests/entrypoints/openai/test_serving_completion.py
SunLei b9af95cf1c [Feature] Add AsyncTokenizerClient&ChatResponseProcessor with remote encode&decode support. (#3674)
* [Feature] add AsyncTokenizerClient

* add decode_image

* Add response_processors with remote decode support.

* [Feature] add tokenizer_base_url startup argument

* Revert comment removal and restore original content.

* [Feature] Non-streaming requests now support remote image decoding.

* Fix parameter type issue in decode_image call.

* Keep completion_token_ids when return_token_ids = False.

* add copyright
2025-08-30 17:06:26 +08:00

128 lines
4.9 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import unittest
from typing import List
from unittest.mock import Mock
from fastdeploy.entrypoints.openai.serving_completion import (
CompletionRequest,
OpenAIServingCompletion,
RequestOutput,
)
class TestOpenAIServingCompletion(unittest.TestCase):
def test_calc_finish_reason_tool_calls(self):
# 创建一个模拟的engine_client并设置reasoning_parser为"ernie_x1"
engine_client = Mock()
engine_client.reasoning_parser = "ernie_x1"
# 创建一个OpenAIServingCompletion实例
serving_completion = OpenAIServingCompletion(engine_client, None, "pid", "ips", 360)
# 创建一个模拟的output并设置finish_reason为"tool_call"
output = {"tool_call": "tool_call"}
# 调用calc_finish_reason方法
result = serving_completion.calc_finish_reason(None, 100, output, False)
# 断言结果为"tool_calls"
assert result == "tool_calls"
def test_calc_finish_reason_stop(self):
# 创建一个模拟的engine_client并设置reasoning_parser为"ernie_x1"
engine_client = Mock()
engine_client.reasoning_parser = "ernie_x1"
# 创建一个OpenAIServingCompletion实例
serving_completion = OpenAIServingCompletion(engine_client, None, "pid", "ips", 360)
# 创建一个模拟的output并设置finish_reason为其他值
output = {"finish_reason": "other_reason"}
# 调用calc_finish_reason方法
result = serving_completion.calc_finish_reason(None, 100, output, False)
# 断言结果为"stop"
assert result == "stop"
def test_calc_finish_reason_length(self):
# 创建一个模拟的engine_client
engine_client = Mock()
# 创建一个OpenAIServingCompletion实例
serving_completion = OpenAIServingCompletion(engine_client, None, "pid", "ips", 360)
# 创建一个模拟的output
output = {}
# 调用calc_finish_reason方法
result = serving_completion.calc_finish_reason(100, 100, output, False)
# 断言结果为"length"
assert result == "length"
def test_request_output_to_completion_response(self):
engine_client = Mock()
# 创建一个OpenAIServingCompletion实例
openai_serving_completion = OpenAIServingCompletion(engine_client, None, "pid", "ips", 360)
final_res_batch: List[RequestOutput] = [
{
"outputs": {
"token_ids": [1, 2, 3],
"text": " world!",
"top_logprobs": {
"a": 0.1,
"b": 0.2,
},
},
"output_token_ids": 3,
},
{
"outputs": {
"token_ids": [4, 5, 6],
"text": " world!",
"top_logprobs": {
"a": 0.3,
"b": 0.4,
},
},
"output_token_ids": 3,
},
]
request: CompletionRequest = Mock()
request.prompt = "Hello, world!"
request.echo = True
request_id = "test_request_id"
created_time = 1655136000
model_name = "test_model"
prompt_batched_token_ids = [[1, 2, 3], [4, 5, 6]]
completion_batched_token_ids = [[7, 8, 9], [10, 11, 12]]
completion_response = openai_serving_completion.request_output_to_completion_response(
final_res_batch=final_res_batch,
request=request,
request_id=request_id,
created_time=created_time,
model_name=model_name,
prompt_batched_token_ids=prompt_batched_token_ids,
completion_batched_token_ids=completion_batched_token_ids,
text_after_process_list=["1", "1"],
)
assert completion_response.id == request_id
assert completion_response.created == created_time
assert completion_response.model == model_name
assert len(completion_response.choices) == 2
# 验证 choices 的 text 属性
assert completion_response.choices[0].text == "Hello, world! world!"
assert completion_response.choices[1].text == "Hello, world! world!"
if __name__ == "__main__":
unittest.main()