Files
FastDeploy/tests/entrypoints/openai/test_completion_echo.py
SunLei b9af95cf1c [Feature] Add AsyncTokenizerClient&ChatResponseProcessor with remote encode&decode support. (#3674)
* [Feature] add AsyncTokenizerClient

* add decode_image

* Add response_processors with remote decode support.

* [Feature] add tokenizer_base_url startup argument

* Revert comment removal and restore original content.

* [Feature] Non-streaming requests now support remote image decoding.

* Fix parameter type issue in decode_image call.

* Keep completion_token_ids when return_token_ids = False.

* add copyright
2025-08-30 17:06:26 +08:00

202 lines
8.0 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import unittest
from unittest.mock import MagicMock, patch
from fastdeploy.entrypoints.openai.serving_completion import (
CompletionRequest,
OpenAIServingCompletion,
)
class YourClass:
async def _1(self, a, b, c):
if b["outputs"].get("send_idx", -1) == 0 and a.echo:
if isinstance(a.prompt, list):
text = a.prompt[c]
else:
text = a.prompt
b["outputs"]["text"] = text + (b["outputs"]["text"] or "")
class TestCompletionEcho(unittest.IsolatedAsyncioTestCase):
def setUp(self):
self.mock_engine = MagicMock()
self.completion_handler = None
def test_single_prompt_non_streaming(self):
"""测试单prompt非流式响应"""
self.completion_handler = OpenAIServingCompletion(
self.mock_engine, models=None, pid=123, ips=None, max_waiting_time=30
)
request = CompletionRequest(prompt="test prompt", max_tokens=10, echo=True, logprobs=1)
mock_output = {
"outputs": {
"text": " generated text",
"token_ids": [1, 2, 3],
"top_logprobs": {"token1": -0.1, "token2": -0.2},
"finished": True,
},
"output_token_ids": 3,
}
self.mock_engine.generate.return_value = [mock_output]
response = self.completion_handler.request_output_to_completion_response(
final_res_batch=[mock_output],
request=request,
request_id="test_id",
created_time=12345,
model_name="test_model",
prompt_batched_token_ids=[[1, 2]],
completion_batched_token_ids=[[3, 4, 5]],
text_after_process_list=["test prompt"],
)
self.assertEqual(response.choices[0].text, "test prompt generated text")
async def test_echo_back_prompt_and_streaming(self):
"""测试_echo_back_prompt方法和流式响应的prompt拼接逻辑"""
self.completion_handler = OpenAIServingCompletion(
self.mock_engine, models=None, pid=123, ips=None, max_waiting_time=30
)
request = CompletionRequest(prompt="test prompt", max_tokens=10, stream=True, echo=True)
mock_response = {"outputs": {"text": "test output", "token_ids": [1, 2, 3], "finished": True}}
with patch.object(self.completion_handler, "_echo_back_prompt") as mock_echo:
def mock_echo_side_effect(req, res, idx):
res["outputs"]["text"] = req.prompt + res["outputs"]["text"]
mock_echo.side_effect = mock_echo_side_effect
await self.completion_handler._echo_back_prompt(request, mock_response, 0)
mock_echo.assert_called_once_with(request, mock_response, 0)
self.assertEqual(mock_response["outputs"]["text"], "test prompttest output")
self.assertEqual(request.prompt, "test prompt")
def test_multi_prompt_non_streaming(self):
"""测试多prompt非流式响应"""
self.completion_handler = OpenAIServingCompletion(
self.mock_engine, models=None, pid=123, ips=None, max_waiting_time=30
)
request = CompletionRequest(prompt=["prompt1", "prompt2"], max_tokens=10, echo=True)
mock_outputs = [
{
"outputs": {"text": " response1", "token_ids": [1, 2], "top_logprobs": None, "finished": True},
"output_token_ids": 2,
},
{
"outputs": {"text": " response2", "token_ids": [3, 4], "top_logprobs": None, "finished": True},
"output_token_ids": 2,
},
]
self.mock_engine.generate.return_value = mock_outputs
response = self.completion_handler.request_output_to_completion_response(
final_res_batch=mock_outputs,
request=request,
request_id="test_id",
created_time=12345,
model_name="test_model",
prompt_batched_token_ids=[[1], [2]],
completion_batched_token_ids=[[1, 2], [3, 4]],
text_after_process_list=["prompt1", "prompt2"],
)
self.assertEqual(len(response.choices), 2)
self.assertEqual(response.choices[0].text, "prompt1 response1")
self.assertEqual(response.choices[1].text, "prompt2 response2")
async def test_multi_prompt_streaming(self):
self.completion_handler = OpenAIServingCompletion(
self.mock_engine, models=None, pid=123, ips=None, max_waiting_time=30
)
request = CompletionRequest(prompt=["prompt1", "prompt2"], max_tokens=10, stream=True, echo=True)
mock_responses = [
{"outputs": {"text": " response1", "token_ids": [1, 2], "finished": True}},
{"outputs": {"text": " response2", "token_ids": [3, 4], "finished": True}},
]
with patch.object(self.completion_handler, "_echo_back_prompt") as mock_echo:
def mock_echo_side_effect(req, res, idx):
res["outputs"]["text"] = req.prompt[idx] + res["outputs"]["text"]
mock_echo.side_effect = mock_echo_side_effect
await self.completion_handler._echo_back_prompt(request, mock_responses[0], 0)
await self.completion_handler._echo_back_prompt(request, mock_responses[1], 1)
self.assertEqual(mock_echo.call_count, 2)
mock_echo.assert_any_call(request, mock_responses[0], 0)
mock_echo.assert_any_call(request, mock_responses[1], 1)
self.assertEqual(mock_responses[0]["outputs"]["text"], "prompt1 response1")
self.assertEqual(mock_responses[1]["outputs"]["text"], "prompt2 response2")
self.assertEqual(request.prompt, ["prompt1", "prompt2"])
async def test_echo_back_prompt_and_streaming1(self):
request = CompletionRequest(echo=True, prompt=["Hello", "World"])
res = {"outputs": {"send_idx": 0, "text": "!"}}
idx = 0
instance = OpenAIServingCompletion(self.mock_engine, models=None, pid=123, ips=None, max_waiting_time=30)
await instance._echo_back_prompt(request, res, idx)
self.assertEqual(res["outputs"]["text"], "Hello!")
async def test_1_prompt_is_string_and_send_idx_is_0(self):
request = CompletionRequest(echo=True, prompt="Hello")
res = {"outputs": {"send_idx": 0, "text": "!"}}
idx = 0
instance = OpenAIServingCompletion(self.mock_engine, models=None, pid=123, ips=None, max_waiting_time=30)
await instance._echo_back_prompt(request, res, idx)
self.assertEqual(res["outputs"]["text"], "Hello!")
async def test_1_send_idx_is_not_0(self):
request = CompletionRequest(echo=True, prompt="Hello")
res = {"outputs": {"send_idx": 1, "text": "!"}}
idx = 0
instance = OpenAIServingCompletion(self.mock_engine, models=None, pid=123, ips=None, max_waiting_time=30)
await instance._echo_back_prompt(request, res, idx)
self.assertEqual(res["outputs"]["text"], "!")
async def test_1_echo_is_false(self):
"""测试echo为False时_echo_back_prompt不拼接prompt"""
request = CompletionRequest(echo=False, prompt="Hello")
res = {"outputs": {"send_idx": 0, "text": "!"}}
idx = 0
instance = OpenAIServingCompletion(self.mock_engine, models=None, pid=123, ips=None, max_waiting_time=30)
await instance._echo_back_prompt(request, res, idx)
self.assertEqual(res["outputs"]["text"], "!")
if __name__ == "__main__":
unittest.main()