Files
FastDeploy/csharp/fastdeploy/vision/visualize.cs
chenjian fc15124800 [Doc] add doxygen docs for c sharp api (#1495)
add doxygen docs for c sharp api

Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
2023-04-09 12:32:22 +08:00

127 lines
5.5 KiB
C#

// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
using System;
using System.IO;
using System.Runtime.InteropServices;
using System.Collections.Generic;
using OpenCvSharp;
using fastdeploy.types_internal_c;
namespace fastdeploy {
namespace vision {
public class Visualize {
/** \brief Show the visualized results for detection models
*
* \param[in] im the input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
* \param[in] result the result produced by model
* \param[in] score_threshold threshold for result scores, the bounding box will not be shown if the score is less than score_threshold
* \param[in] line_size line size for bounding boxes
* \param[in] font_size font size for text
* \return Mat type stores the visualized results
*/
public static Mat VisDetection(Mat im, DetectionResult detection_result,
float score_threshold = 0.0f,
int line_size = 1, float font_size = 0.5f) {
FD_DetectionResult fd_detection_result =
ConvertResult.ConvertDetectionResultToCResult(detection_result);
IntPtr result_ptr =
FD_C_VisDetection(im.CvPtr, ref fd_detection_result, score_threshold,
line_size, font_size);
return new Mat(result_ptr);
}
/** \brief Show the visualized results with custom labels for detection models
*
* \param[in] im the input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
* \param[in] result the result produced by model
* \param[in] labels the visualized result will show the bounding box contain class label
* \param[in] score_threshold threshold for result scores, the bounding box will not be shown if the score is less than score_threshold
* \param[in] line_size line size for bounding boxes
* \param[in] font_size font size for text
* \return Mat type stores the visualized results
*/
public static Mat VisDetection(Mat im, DetectionResult detection_result,
string[] labels,
float score_threshold = 0.0f,
int line_size = 1, float font_size = 0.5f) {
FD_DetectionResult fd_detection_result =
ConvertResult.ConvertDetectionResultToCResult(detection_result);
FD_OneDimArrayCstr labels_in = ConvertResult.ConvertStringArrayToCOneDimArrayCstr(labels);
IntPtr result_ptr =
FD_C_VisDetectionWithLabel(im.CvPtr, ref fd_detection_result,
ref labels_in, score_threshold,
line_size, font_size);
return new Mat(result_ptr);
}
/** \brief Show the visualized results for Ocr models
*
* \param[in] im the input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
* \param[in] result the result produced by model
* \return Mat type stores the visualized results
*/
public static Mat VisOcr(Mat im, OCRResult ocr_result){
FD_OCRResult fd_ocr_result =
ConvertResult.ConvertOCRResultToCResult(ocr_result);
IntPtr result_ptr =
FD_C_VisOcr(im.CvPtr, ref fd_ocr_result);
return new Mat(result_ptr);
}
/** \brief Show the visualized results for segmentation models
*
* \param[in] im the input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
* \param[in] result the result produced by model
* \param[in] weight transparent weight of visualized result image
* \return Mat type stores the visualized results
*/
public static Mat VisSegmentation(Mat im,
SegmentationResult segmentation_result,
float weight = 0.5f){
FD_SegmentationResult fd_segmentation_result =
ConvertResult.ConvertSegmentationResultToCResult(segmentation_result);
IntPtr result_ptr =
FD_C_VisSegmentation(im.CvPtr, ref fd_segmentation_result,
weight);
return new Mat(result_ptr);
}
[DllImport("fastdeploy.dll", EntryPoint = "FD_C_VisDetection")]
private static extern IntPtr
FD_C_VisDetection(IntPtr im, ref FD_DetectionResult fd_detection_result,
float score_threshold, int line_size, float font_size);
[DllImport("fastdeploy.dll", EntryPoint = "FD_C_VisDetectionWithLabel")]
private static extern IntPtr
FD_C_VisDetectionWithLabel(IntPtr im, ref FD_DetectionResult fd_detection_result,
ref FD_OneDimArrayCstr labels,
float score_threshold, int line_size, float font_size);
[DllImport("fastdeploy.dll", EntryPoint = "FD_C_VisOcr")]
private static extern IntPtr
FD_C_VisOcr(IntPtr im, ref FD_OCRResult fd_ocr_result);
[DllImport("fastdeploy.dll", EntryPoint = "FD_C_VisSegmentation")]
private static extern IntPtr
FD_C_VisSegmentation(IntPtr im, ref FD_SegmentationResult fd_segmentation_result, float weight);
}
}
}