Files
FastDeploy/csharp/fastdeploy/vision/ocr/model.cs
chenjian fc15124800 [Doc] add doxygen docs for c sharp api (#1495)
add doxygen docs for c sharp api

Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
2023-04-09 12:32:22 +08:00

857 lines
33 KiB
C#

// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
using System;
using System.IO;
using System.Runtime.InteropServices;
using System.Collections.Generic;
using OpenCvSharp;
using fastdeploy.types_internal_c;
using fastdeploy.vision;
using fastdeploy.vision.ocr;
namespace fastdeploy {
namespace vision {
namespace ocr {
// Recognizer
/*! @brief Recognizer object is used to load the recognition model provided by PaddleOCR.
*/
public class Recognizer {
/** \brief Set path of model file, and the configuration of runtime
*
* \param[in] model_file Path of model file, e.g ./ch_PP-OCRv3_rec_infer/model.pdmodel.
* \param[in] params_file Path of parameter file, e.g ./ch_PP-OCRv3_rec_infer/model.pdiparams, if the model format is ONNX, this parameter will be ignored.
* \param[in] label_path Path of label file used by OCR recognition model. e.g ./ppocr_keys_v1.txt
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in `valid_cpu_backends`.
* \param[in] model_format Model format of the loaded model, default is Paddle format.
*/
public Recognizer(string model_file, string params_file,
string label_path,
RuntimeOption custom_option = null,
ModelFormat model_format = ModelFormat.PADDLE) {
if (custom_option == null) {
custom_option = new RuntimeOption();
}
fd_recognizer_model_wrapper = FD_C_CreateRecognizerWrapper(
model_file, params_file, label_path, custom_option.GetWrapperPtr(),
model_format);
}
~Recognizer() {
FD_C_DestroyRecognizerWrapper(fd_recognizer_model_wrapper);
}
/// Get model's name
public string ModelName() {
return "ppocr/ocr_rec";
}
/** \brief Predict the input image and get OCR recognition model result.
*
* \param[in] img The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format.
*
* \return The output of OCR recognition model result
*/
public OCRRecognizerResult Predict(Mat img) {
OCRRecognizerResult ocr_recognizer_result = new OCRRecognizerResult();
FD_Cstr text = new FD_Cstr();
if(! FD_C_RecognizerWrapperPredict(
fd_recognizer_model_wrapper, img.CvPtr,
ref text, ref ocr_recognizer_result.rec_score))
{
return null;
} // predict
ocr_recognizer_result.text = text.data;
FD_C_DestroyCstr(ref text);
return ocr_recognizer_result;
}
/** \brief BatchPredict the input image and get OCR recognition model result.
*
* \param[in] images The list of input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format.
*
* \return The output of OCR recognition model result.
*/
public List<OCRRecognizerResult> BatchPredict(List<Mat> imgs){
FD_OneDimMat imgs_in = new FD_OneDimMat();
imgs_in.size = (nuint)imgs.Count;
// Copy data to unmanaged memory
IntPtr[] mat_ptrs = new IntPtr[imgs_in.size];
for(int i=0;i < (int)imgs.Count; i++){
mat_ptrs[i] = imgs[i].CvPtr;
}
int size = Marshal.SizeOf(new IntPtr()) * (int)imgs_in.size;
imgs_in.data = Marshal.AllocHGlobal(size);
Marshal.Copy(mat_ptrs, 0, imgs_in.data,
mat_ptrs.Length);
FD_OneDimArrayCstr fd_texts_list = new FD_OneDimArrayCstr();
FD_OneDimArrayFloat fd_rec_scores_list = new FD_OneDimArrayFloat();
if (!FD_C_RecognizerWrapperBatchPredict(fd_recognizer_model_wrapper, imgs_in, ref fd_texts_list, ref fd_rec_scores_list)){
return null;
}
// copy texts
string[] texts = ConvertResult.ConvertCOneDimArrayCstrToStringArray(fd_texts_list);
// copy rec_scores
float[] rec_scores = new float[fd_rec_scores_list.size];
Marshal.Copy(fd_rec_scores_list.data, rec_scores, 0,
rec_scores.Length);
List<OCRRecognizerResult> results_out = new List<OCRRecognizerResult>();
for(int i=0;i < (int)imgs.Count; i++){
OCRRecognizerResult result = new OCRRecognizerResult();
result.text = texts[i];
result.rec_score = rec_scores[i];
results_out.Add(result);
}
FD_C_DestroyOneDimArrayCstr(ref fd_texts_list);
FD_C_DestroyOneDimArrayFloat(ref fd_rec_scores_list);
Marshal.FreeHGlobal(imgs_in.data);
return results_out;
}
public List<OCRRecognizerResult> BatchPredict(List<Mat> imgs, int start_index, int end_index, List<int> indices){
FD_OneDimMat imgs_in = new FD_OneDimMat();
imgs_in.size = (nuint)imgs.Count;
// Copy data to unmanaged memory
IntPtr[] mat_ptrs = new IntPtr[imgs_in.size];
for(int i=0;i < (int)imgs.Count; i++){
mat_ptrs[i] = imgs[i].CvPtr;
}
int size = Marshal.SizeOf(new IntPtr()) * (int)imgs_in.size;
imgs_in.data = Marshal.AllocHGlobal(size);
Marshal.Copy(mat_ptrs, 0, imgs_in.data,
mat_ptrs.Length);
FD_OneDimArrayCstr fd_texts_list = new FD_OneDimArrayCstr();
FD_OneDimArrayFloat fd_rec_scores_list = new FD_OneDimArrayFloat();
FD_OneDimArrayInt32 indices_in = new FD_OneDimArrayInt32();
indices_in.size = (uint)indices.Count;
int[] indices_array = new int[indices_in.size];
indices.CopyTo(indices_array);
// Copy data to unmanaged memory
size = Marshal.SizeOf(indices_array[0]) * indices_array.Length;
indices_in.data = Marshal.AllocHGlobal(size);
Marshal.Copy(indices_array, 0, indices_in.data,
indices_array.Length);
if (!FD_C_RecognizerWrapperBatchPredictWithIndex(fd_recognizer_model_wrapper, imgs_in, ref fd_texts_list, ref fd_rec_scores_list, start_index, end_index, indices_in)){
return null;
}
// copy texts
string[] texts = ConvertResult.ConvertCOneDimArrayCstrToStringArray(fd_texts_list);
// copy rec_scores
float[] rec_scores = new float[fd_rec_scores_list.size];
Marshal.Copy(fd_rec_scores_list.data, rec_scores, 0,
rec_scores.Length);
List<OCRRecognizerResult> results_out = new List<OCRRecognizerResult>();
for(int i=0;i < (int)imgs.Count; i++){
OCRRecognizerResult result = new OCRRecognizerResult();
result.text = texts[i];
result.rec_score = rec_scores[i];
results_out.Add(result);
}
FD_C_DestroyOneDimArrayCstr(ref fd_texts_list);
FD_C_DestroyOneDimArrayFloat(ref fd_rec_scores_list);
Marshal.FreeHGlobal(imgs_in.data);
Marshal.FreeHGlobal(indices_in.data);
return results_out;
}
/// Check whether model is initialized successfully
public bool Initialized() {
return FD_C_RecognizerWrapperInitialized(fd_recognizer_model_wrapper);
}
public IntPtr GetWrapperPtr(){
return fd_recognizer_model_wrapper;
}
// below are underlying C api
private IntPtr fd_recognizer_model_wrapper;
[DllImport("fastdeploy.dll",
EntryPoint = "FD_C_CreateRecognizerWrapper")]
private static extern IntPtr FD_C_CreateRecognizerWrapper(
string model_file, string params_file,string label_path,
IntPtr fd_runtime_option_wrapper, ModelFormat model_format);
[DllImport("fastdeploy.dll",
EntryPoint = "FD_C_DestroyRecognizerWrapper")]
private static extern void
FD_C_DestroyRecognizerWrapper(IntPtr fd_recognizer_model_wrapper);
[DllImport("fastdeploy.dll",
EntryPoint = "FD_C_RecognizerWrapperPredict")]
private static extern bool
FD_C_RecognizerWrapperPredict(IntPtr fd_recognizer_model_wrapper,
IntPtr img,
ref FD_Cstr text,
ref float rec_score);
[DllImport("fastdeploy.dll",
EntryPoint = "FD_C_DestroyCstr")]
private static extern void
FD_C_DestroyCstr(ref FD_Cstr fd_cstr);
[DllImport("fastdeploy.dll",
EntryPoint = "FD_C_DestroyOneDimArrayCstr")]
private static extern void
FD_C_DestroyOneDimArrayCstr(ref FD_OneDimArrayCstr fd_onedim_cstr);
[DllImport("fastdeploy.dll",
EntryPoint = "FD_C_DestroyOneDimArrayFloat")]
private static extern void
FD_C_DestroyOneDimArrayFloat(ref FD_OneDimArrayFloat fd_onedim_float);
[DllImport("fastdeploy.dll",
EntryPoint = "FD_C_RecognizerWrapperInitialized")]
private static extern bool
FD_C_RecognizerWrapperInitialized(IntPtr fd_recognizer_model_wrapper);
[DllImport("fastdeploy.dll",
EntryPoint = "FD_C_RecognizerWrapperBatchPredict")]
private static extern bool
FD_C_RecognizerWrapperBatchPredict(IntPtr fd_recognizer_model_wrapper,
FD_OneDimMat imgs,
ref FD_OneDimArrayCstr texts,
ref FD_OneDimArrayFloat rec_scores);
[DllImport("fastdeploy.dll",
EntryPoint = "FD_C_RecognizerWrapperBatchPredictWithIndex")]
private static extern bool
FD_C_RecognizerWrapperBatchPredictWithIndex(IntPtr fd_recognizer_model_wrapper,
FD_OneDimMat imgs,
ref FD_OneDimArrayCstr texts,
ref FD_OneDimArrayFloat rec_scores,
int start_index,
int end_index,
FD_OneDimArrayInt32 indices);
}
// Classifier
/*! @brief Classifier object is used to load the classification model provided by PaddleOCR.
*/
public class Classifier {
/** \brief Set path of model file, and the configuration of runtime
*
* \param[in] model_file Path of model file, e.g ./ch_ppocr_mobile_v2.0_cls_infer/model.pdmodel.
* \param[in] params_file Path of parameter file, e.g ./ch_ppocr_mobile_v2.0_cls_infer/model.pdiparams, if the model format is ONNX, this parameter will be ignored.
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in `valid_cpu_backends`.
* \param[in] model_format Model format of the loaded model, default is Paddle format.
*/
public Classifier(string model_file, string params_file,
RuntimeOption custom_option = null,
ModelFormat model_format = ModelFormat.PADDLE) {
if (custom_option == null) {
custom_option = new RuntimeOption();
}
fd_classifier_model_wrapper = FD_C_CreateClassifierWrapper(
model_file, params_file, custom_option.GetWrapperPtr(),
model_format);
}
~Classifier() {
FD_C_DestroyClassifierWrapper(fd_classifier_model_wrapper);
}
/// Get model's name
public string ModelName() {
return "ppocr/ocr_cls";
}
/** \brief Predict the input image and get OCR classification model cls_result.
*
* \param[in] img The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format.
*
* \return OCRClassifierResult
*/
public OCRClassifierResult Predict(Mat img) {
OCRClassifierResult ocr_classify_result = new OCRClassifierResult();
if(! FD_C_ClassifierWrapperPredict(
fd_classifier_model_wrapper, img.CvPtr,
ref ocr_classify_result.cls_label, ref ocr_classify_result.cls_score))
{
return null;
} // predict
return ocr_classify_result;
}
/** \brief BatchPredict the input image and get OCR classification model result.
*
* \param[in] img The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format.
*
* \return List<OCRClassifierResult>
*/
public List<OCRClassifierResult> BatchPredict(List<Mat> imgs){
FD_OneDimMat imgs_in = new FD_OneDimMat();
imgs_in.size = (nuint)imgs.Count;
// Copy data to unmanaged memory
IntPtr[] mat_ptrs = new IntPtr[imgs_in.size];
for(int i=0;i < (int)imgs.Count; i++){
mat_ptrs[i] = imgs[i].CvPtr;
}
int size = Marshal.SizeOf(new IntPtr()) * (int)imgs_in.size;
imgs_in.data = Marshal.AllocHGlobal(size);
Marshal.Copy(mat_ptrs, 0, imgs_in.data,
mat_ptrs.Length);
FD_OneDimArrayInt32 fd_cls_labels_list = new FD_OneDimArrayInt32();
FD_OneDimArrayFloat fd_cls_scores_list = new FD_OneDimArrayFloat();
if (!FD_C_ClassifierWrapperBatchPredict(fd_classifier_model_wrapper, imgs_in, ref fd_cls_labels_list, ref fd_cls_scores_list)){
return null;
}
// copy cls_labels
int[] cls_labels = new int[fd_cls_labels_list.size];
Marshal.Copy(fd_cls_labels_list.data, cls_labels, 0,
cls_labels.Length);
// copy cls_scores
float[] cls_scores = new float[fd_cls_scores_list.size];
Marshal.Copy(fd_cls_scores_list.data, cls_scores, 0,
cls_scores.Length);
List<OCRClassifierResult> results_out = new List<OCRClassifierResult>();
for(int i=0;i < (int)imgs.Count; i++){
OCRClassifierResult result = new OCRClassifierResult();
result.cls_label = cls_labels[i];
result.cls_score = cls_scores[i];
results_out.Add(result);
}
FD_C_DestroyOneDimArrayInt32(ref fd_cls_labels_list);
FD_C_DestroyOneDimArrayFloat(ref fd_cls_scores_list);
Marshal.FreeHGlobal(imgs_in.data);
return results_out;
}
public List<OCRClassifierResult> BatchPredict(List<Mat> imgs, int start_index, int end_index){
FD_OneDimMat imgs_in = new FD_OneDimMat();
imgs_in.size = (nuint)imgs.Count;
// Copy data to unmanaged memory
IntPtr[] mat_ptrs = new IntPtr[imgs_in.size];
for(int i=0;i < (int)imgs.Count; i++){
mat_ptrs[i] = imgs[i].CvPtr;
}
int size = Marshal.SizeOf(new IntPtr()) * (int)imgs_in.size;
imgs_in.data = Marshal.AllocHGlobal(size);
Marshal.Copy(mat_ptrs, 0, imgs_in.data,
mat_ptrs.Length);
FD_OneDimArrayInt32 fd_cls_labels_list = new FD_OneDimArrayInt32();
FD_OneDimArrayFloat fd_cls_scores_list = new FD_OneDimArrayFloat();
if (!FD_C_ClassifierWrapperBatchPredictWithIndex(fd_classifier_model_wrapper, imgs_in, ref fd_cls_labels_list, ref fd_cls_scores_list, start_index, end_index)){
return null;
}
// copy cls_labels
int[] cls_labels = new int[fd_cls_labels_list.size];
Marshal.Copy(fd_cls_labels_list.data, cls_labels, 0,
cls_labels.Length);
// copy cls_scores
float[] cls_scores = new float[fd_cls_scores_list.size];
Marshal.Copy(fd_cls_scores_list.data, cls_scores, 0,
cls_scores.Length);
List<OCRClassifierResult> results_out = new List<OCRClassifierResult>();
for(int i=0;i < (int)imgs.Count; i++){
OCRClassifierResult result = new OCRClassifierResult();
result.cls_label = cls_labels[i];
result.cls_score = cls_scores[i];
results_out.Add(result);
}
FD_C_DestroyOneDimArrayInt32(ref fd_cls_labels_list);
FD_C_DestroyOneDimArrayFloat(ref fd_cls_scores_list);
Marshal.FreeHGlobal(imgs_in.data);
return results_out;
}
/// Check whether model is initialized successfully
public bool Initialized() {
return FD_C_ClassifierWrapperInitialized(fd_classifier_model_wrapper);
}
public IntPtr GetWrapperPtr(){
return fd_classifier_model_wrapper;
}
// below are underlying C api
private IntPtr fd_classifier_model_wrapper;
[DllImport("fastdeploy.dll",
EntryPoint = "FD_C_CreateClassifierWrapper")]
private static extern IntPtr FD_C_CreateClassifierWrapper(
string model_file, string params_file,
IntPtr fd_runtime_option_wrapper, ModelFormat model_format);
[DllImport("fastdeploy.dll",
EntryPoint = "FD_C_DestroyClassifierWrapper")]
private static extern void
FD_C_DestroyClassifierWrapper(IntPtr fd_classifier_model_wrapper);
[DllImport("fastdeploy.dll",
EntryPoint = "FD_C_ClassifierWrapperPredict")]
private static extern bool
FD_C_ClassifierWrapperPredict(IntPtr fd_classifier_model_wrapper,
IntPtr img,
ref int cls_label,
ref float cls_score);
[DllImport("fastdeploy.dll",
EntryPoint = "FD_C_ClassifierWrapperInitialized")]
private static extern bool
FD_C_ClassifierWrapperInitialized(IntPtr fd_classifier_model_wrapper);
[DllImport("fastdeploy.dll",
EntryPoint = "FD_C_ClassifierWrapperBatchPredict")]
private static extern bool
FD_C_ClassifierWrapperBatchPredict(IntPtr fd_classifier_model_wrapper,
FD_OneDimMat imgs,
ref FD_OneDimArrayInt32 cls_labels,
ref FD_OneDimArrayFloat cls_scores);
[DllImport("fastdeploy.dll",
EntryPoint = "FD_C_ClassifierWrapperBatchPredictWithIndex")]
private static extern bool
FD_C_ClassifierWrapperBatchPredictWithIndex(IntPtr fd_classifier_model_wrapper,
FD_OneDimMat imgs,
ref FD_OneDimArrayInt32 cls_labels,
ref FD_OneDimArrayFloat cls_scores,
int start_index,
int end_index);
[DllImport("fastdeploy.dll",
EntryPoint = "FD_C_DestroyOneDimArrayFloat")]
private static extern void
FD_C_DestroyOneDimArrayFloat(ref FD_OneDimArrayFloat fd_onedim_float);
[DllImport("fastdeploy.dll",
EntryPoint = "FD_C_DestroyOneDimArrayInt32")]
private static extern void
FD_C_DestroyOneDimArrayInt32(ref FD_OneDimArrayInt32 fd_onedim_int32);
}
// DBDetector
/*! @brief DBDetector object is used to load the detection model provided by PaddleOCR.
*/
public class DBDetector {
/** \brief Set path of model file, and the configuration of runtime
*
* \param[in] model_file Path of model file, e.g ./ch_PP-OCRv3_det_infer/model.pdmodel.
* \param[in] params_file Path of parameter file, e.g ./ch_PP-OCRv3_det_infer/model.pdiparams, if the model format is ONNX, this parameter will be ignored.
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in `valid_cpu_backends`.
* \param[in] model_format Model format of the loaded model, default is Paddle format.
*/
public DBDetector(string model_file, string params_file,
RuntimeOption custom_option = null,
ModelFormat model_format = ModelFormat.PADDLE) {
if (custom_option == null) {
custom_option = new RuntimeOption();
}
fd_dbdetector_model_wrapper = FD_C_CreateDBDetectorWrapper(
model_file, params_file, custom_option.GetWrapperPtr(),
model_format);
}
~DBDetector() {
FD_C_DestroyDBDetectorWrapper(fd_dbdetector_model_wrapper);
}
/// Get model's name
public string ModelName() {
return "ppocr/ocr_det";
}
/** \brief Predict the input image and get OCR detection model result.
*
* \param[in] img The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format.
*
* \return OCRDBDetectorResult
*/
public OCRDBDetectorResult Predict(Mat img) {
OCRDBDetectorResult ocr_detector_result = new OCRDBDetectorResult();
FD_TwoDimArrayInt32 fd_box_result = new FD_TwoDimArrayInt32();
if(! FD_C_DBDetectorWrapperPredict(
fd_dbdetector_model_wrapper, img.CvPtr,
ref fd_box_result))
{
return null;
} // predict
ocr_detector_result.boxes = new List<int[]>();
FD_OneDimArrayInt32[] boxes =
new FD_OneDimArrayInt32[fd_box_result.size];
for (int i = 0; i < (int)fd_box_result.size; i++) {
boxes[i] = (FD_OneDimArrayInt32)Marshal.PtrToStructure(
fd_box_result.data + i * Marshal.SizeOf(boxes[0]),
typeof(FD_OneDimArrayInt32));
int[] box_i = new int[boxes[i].size];
Marshal.Copy(boxes[i].data, box_i, 0, box_i.Length);
ocr_detector_result.boxes.Add(box_i);
}
FD_C_DestroyTwoDimArrayInt32(ref fd_box_result);
return ocr_detector_result;
}
/** \brief BatchPredict the input image and get OCR detection model result.
*
* \param[in] images The list input of image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format.
*
* \return List<OCRDBDetectorResult>
*/
public List<OCRDBDetectorResult> BatchPredict(List<Mat> imgs){
FD_OneDimMat imgs_in = new FD_OneDimMat();
imgs_in.size = (nuint)imgs.Count;
// Copy data to unmanaged memory
IntPtr[] mat_ptrs = new IntPtr[imgs_in.size];
for(int i=0;i < (int)imgs.Count; i++){
mat_ptrs[i] = imgs[i].CvPtr;
}
int size = Marshal.SizeOf(new IntPtr()) * (int)imgs_in.size;
imgs_in.data = Marshal.AllocHGlobal(size);
Marshal.Copy(mat_ptrs, 0, imgs_in.data,
mat_ptrs.Length);
FD_ThreeDimArrayInt32 fd_det_results_list = new FD_ThreeDimArrayInt32();
if (!FD_C_DBDetectorWrapperBatchPredict(fd_dbdetector_model_wrapper, imgs_in, ref fd_det_results_list)){
return null;
}
List<OCRDBDetectorResult> results_out = new List<OCRDBDetectorResult>();
FD_TwoDimArrayInt32[] batch_boxes =
new FD_TwoDimArrayInt32[fd_det_results_list.size];
for(int i=0;i < (int)imgs.Count; i++){
OCRDBDetectorResult result = new OCRDBDetectorResult();
result.boxes = new List<int[]>();
batch_boxes[i] = (FD_TwoDimArrayInt32)Marshal.PtrToStructure(
fd_det_results_list.data + i * Marshal.SizeOf(batch_boxes[0]),
typeof(FD_TwoDimArrayInt32));
FD_OneDimArrayInt32[] boxes =
new FD_OneDimArrayInt32[batch_boxes[i].size];
for (int j = 0; j < (int)batch_boxes[i].size; j++) {
boxes[j] = (FD_OneDimArrayInt32)Marshal.PtrToStructure(
batch_boxes[i].data + j * Marshal.SizeOf(boxes[0]),
typeof(FD_OneDimArrayInt32));
int[] box_j = new int[boxes[j].size];
Marshal.Copy(boxes[j].data, box_j, 0, box_j.Length);
result.boxes.Add(box_j);
}
results_out.Add(result);
}
FD_C_DestroyThreeDimArrayInt32(ref fd_det_results_list);
Marshal.FreeHGlobal(imgs_in.data);
return results_out;
}
/// Check whether model is initialized successfully
public bool Initialized() {
return FD_C_DBDetectorWrapperInitialized(fd_dbdetector_model_wrapper);
}
public IntPtr GetWrapperPtr(){
return fd_dbdetector_model_wrapper;
}
// below are underlying C api
private IntPtr fd_dbdetector_model_wrapper;
[DllImport("fastdeploy.dll",
EntryPoint = "FD_C_CreateDBDetectorWrapper")]
private static extern IntPtr FD_C_CreateDBDetectorWrapper(
string model_file, string params_file,
IntPtr fd_runtime_option_wrapper, ModelFormat model_format);
[DllImport("fastdeploy.dll",
EntryPoint = "FD_C_DestroyDBDetectorWrapper")]
private static extern void
FD_C_DestroyDBDetectorWrapper(IntPtr fd_dbdetector_model_wrapper);
[DllImport("fastdeploy.dll",
EntryPoint = "FD_C_DBDetectorWrapperPredict")]
private static extern bool
FD_C_DBDetectorWrapperPredict(IntPtr fd_dbdetector_model_wrapper,
IntPtr img,
ref FD_TwoDimArrayInt32 boxes_result);
[DllImport("fastdeploy.dll",
EntryPoint = "FD_C_DBDetectorWrapperInitialized")]
private static extern bool
FD_C_DBDetectorWrapperInitialized(IntPtr fd_dbdetector_model_wrapper);
[DllImport("fastdeploy.dll",
EntryPoint = "FD_C_DBDetectorWrapperBatchPredict")]
private static extern bool
FD_C_DBDetectorWrapperBatchPredict(IntPtr fd_dbdetector_model_wrapper,
FD_OneDimMat imgs,
ref FD_ThreeDimArrayInt32 det_results);
[DllImport("fastdeploy.dll",
EntryPoint = "FD_C_DestroyOneDimArrayInt32")]
private static extern void
FD_C_DestroyOneDimArrayInt32(ref FD_OneDimArrayInt32 fd_onedim_int32);
[DllImport("fastdeploy.dll",
EntryPoint = "FD_C_DestroyTwoDimArrayInt32")]
private static extern void
FD_C_DestroyTwoDimArrayInt32(ref FD_TwoDimArrayInt32 fd_twodim_int32);
[DllImport("fastdeploy.dll",
EntryPoint = "FD_C_DestroyThreeDimArrayInt32")]
private static extern void
FD_C_DestroyThreeDimArrayInt32(ref FD_ThreeDimArrayInt32 fd_threedim_int32);
}
}
}
namespace pipeline {
// PPOCRv2
/*! @brief PPOCRv2 is used to load PP-OCRv2 series models provided by PaddleOCR.
*/
public class PPOCRv2 {
/** \brief Set up the detection model path, classification model path and recognition model path respectively.
*
* \param[in] det_model Path of detection model, e.g ./ch_PP-OCRv2_det_infer
* \param[in] cls_model Path of classification model, e.g ./ch_ppocr_mobile_v2.0_cls_infer
* \param[in] rec_model Path of recognition model, e.g ./ch_PP-OCRv2_rec_infer
*/
public PPOCRv2(DBDetector ppocrv2, Classifier classifier,
Recognizer recognizer) {
fd_ppocrv2_wrapper = FD_C_CreatePPOCRv2Wrapper(
ppocrv2.GetWrapperPtr(),
classifier.GetWrapperPtr(),
recognizer.GetWrapperPtr());
}
~PPOCRv2() {
FD_C_DestroyPPOCRv2Wrapper(fd_ppocrv2_wrapper);
}
public string ModelName() {
return "PPOCRv2";
}
/** \brief Predict the input image and get OCR result.
*
* \param[in] im The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format.
*
* \return OCRResult
*/
public OCRResult Predict(Mat img) {
FD_OCRResult fd_ocr_result = new FD_OCRResult();
if(! FD_C_PPOCRv2WrapperPredict(
fd_ppocrv2_wrapper, img.CvPtr,
ref fd_ocr_result))
{
return null;
} // predict
OCRResult ocr_detector_result = ConvertResult.ConvertCResultToOCRResult(fd_ocr_result);
FD_C_DestroyOCRResult(ref fd_ocr_result);
return ocr_detector_result;
}
/** \brief BatchPredict the input image and get OCR result.
*
* \param[in] images The list of input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format.
*
* \return List<OCRResult>
*/
public List<OCRResult> BatchPredict(List<Mat> imgs){
FD_OneDimMat imgs_in = new FD_OneDimMat();
imgs_in.size = (nuint)imgs.Count;
// Copy data to unmanaged memory
IntPtr[] mat_ptrs = new IntPtr[imgs_in.size];
for(int i=0;i < (int)imgs.Count; i++){
mat_ptrs[i] = imgs[i].CvPtr;
}
int size = Marshal.SizeOf(new IntPtr()) * (int)imgs_in.size;
imgs_in.data = Marshal.AllocHGlobal(size);
Marshal.Copy(mat_ptrs, 0, imgs_in.data,
mat_ptrs.Length);
FD_OneDimOCRResult fd_ocr_result_array = new FD_OneDimOCRResult();
if (!FD_C_PPOCRv2WrapperBatchPredict(fd_ppocrv2_wrapper, imgs_in, ref fd_ocr_result_array)){
return null;
}
List<OCRResult> results_out = new List<OCRResult>();
for(int i=0;i < (int)imgs.Count; i++){
FD_OCRResult fd_ocr_result = (FD_OCRResult)Marshal.PtrToStructure(
fd_ocr_result_array.data + i * Marshal.SizeOf(new FD_OCRResult()),
typeof(FD_OCRResult));
results_out.Add(ConvertResult.ConvertCResultToOCRResult(fd_ocr_result));
FD_C_DestroyOCRResult(ref fd_ocr_result);
}
Marshal.FreeHGlobal(imgs_in.data);
return results_out;
}
/// Check whether model is initialized successfully
public bool Initialized() {
return FD_C_PPOCRv2WrapperInitialized(fd_ppocrv2_wrapper);
}
// below are underlying C api
private IntPtr fd_ppocrv2_wrapper;
[DllImport("fastdeploy.dll",
EntryPoint = "FD_C_CreatePPOCRv2Wrapper")]
private static extern IntPtr FD_C_CreatePPOCRv2Wrapper(
IntPtr det_model, IntPtr cls_model,
IntPtr rec_model);
[DllImport("fastdeploy.dll",
EntryPoint = "FD_C_DestroyPPOCRv2Wrapper")]
private static extern void
FD_C_DestroyPPOCRv2Wrapper(IntPtr fd_ppocrv2_model_wrapper);
[DllImport("fastdeploy.dll",
EntryPoint = "FD_C_PPOCRv2WrapperPredict")]
private static extern bool
FD_C_PPOCRv2WrapperPredict(IntPtr fd_ppocrv2_model_wrapper,
IntPtr img,
ref FD_OCRResult result);
[DllImport("fastdeploy.dll",
EntryPoint = "FD_C_PPOCRv2WrapperInitialized")]
private static extern bool
FD_C_PPOCRv2WrapperInitialized(IntPtr fd_ppocrv2_model_wrapper);
[DllImport("fastdeploy.dll",
EntryPoint = "FD_C_PPOCRv2WrapperBatchPredict")]
private static extern bool
FD_C_PPOCRv2WrapperBatchPredict(IntPtr fd_ppocrv2_model_wrapper,
FD_OneDimMat imgs,
ref FD_OneDimOCRResult batch_result);
[DllImport("fastdeploy.dll",
EntryPoint = "FD_C_DestroyOCRResult")]
private static extern void
FD_C_DestroyOCRResult(ref FD_OCRResult fd_ocr_result);
}
// PPOCRv3
/*! @brief PPOCRv3 is used to load PP-OCRv3 series models provided by PaddleOCR.
*/
public class PPOCRv3 {
/** \brief Set up the detection model path, classification model path and recognition model path respectively.
*
* \param[in] det_model Path of detection model, e.g ./ch_PP-OCRv3_det_infer
* \param[in] cls_model Path of classification model, e.g ./ch_ppocr_mobile_v2.0_cls_infer
* \param[in] rec_model Path of recognition model, e.g ./ch_PP-OCRv3_rec_infer
*/
public PPOCRv3(DBDetector ppocrv3, Classifier classifier,
Recognizer recognizer) {
fd_ppocrv3_wrapper = FD_C_CreatePPOCRv3Wrapper(
ppocrv3.GetWrapperPtr(),
classifier.GetWrapperPtr(),
recognizer.GetWrapperPtr());
}
~PPOCRv3() {
FD_C_DestroyPPOCRv3Wrapper(fd_ppocrv3_wrapper);
}
public string ModelName() {
return "PPOCRv3";
}
/** \brief Predict the input image and get OCR result.
*
* \param[in] im The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format.
*
* \return OCRResult
*/
public OCRResult Predict(Mat img) {
FD_OCRResult fd_ocr_result = new FD_OCRResult();
if(! FD_C_PPOCRv3WrapperPredict(
fd_ppocrv3_wrapper, img.CvPtr,
ref fd_ocr_result))
{
return null;
} // predict
OCRResult ocr_detector_result = ConvertResult.ConvertCResultToOCRResult(fd_ocr_result);
FD_C_DestroyOCRResult(ref fd_ocr_result);
return ocr_detector_result;
}
/** \brief BatchPredict the input image and get OCR result.
*
* \param[in] images The list of input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format.
*
* \return List<OCRResult>
*/
public List<OCRResult> BatchPredict(List<Mat> imgs){
FD_OneDimMat imgs_in = new FD_OneDimMat();
imgs_in.size = (nuint)imgs.Count;
// Copy data to unmanaged memory
IntPtr[] mat_ptrs = new IntPtr[imgs_in.size];
for(int i=0;i < (int)imgs.Count; i++){
mat_ptrs[i] = imgs[i].CvPtr;
}
int size = Marshal.SizeOf(new IntPtr()) * (int)imgs_in.size;
imgs_in.data = Marshal.AllocHGlobal(size);
Marshal.Copy(mat_ptrs, 0, imgs_in.data,
mat_ptrs.Length);
FD_OneDimOCRResult fd_ocr_result_array = new FD_OneDimOCRResult();
if (!FD_C_PPOCRv3WrapperBatchPredict(fd_ppocrv3_wrapper, imgs_in, ref fd_ocr_result_array)){
return null;
}
List<OCRResult> results_out = new List<OCRResult>();
for(int i=0;i < (int)imgs.Count; i++){
FD_OCRResult fd_ocr_result = (FD_OCRResult)Marshal.PtrToStructure(
fd_ocr_result_array.data + i * Marshal.SizeOf(new FD_OCRResult()),
typeof(FD_OCRResult));
results_out.Add(ConvertResult.ConvertCResultToOCRResult(fd_ocr_result));
FD_C_DestroyOCRResult(ref fd_ocr_result);
}
Marshal.FreeHGlobal(imgs_in.data);
return results_out;
}
/// Check whether model is initialized successfully
public bool Initialized() {
return FD_C_PPOCRv3WrapperInitialized(fd_ppocrv3_wrapper);
}
// below are underlying C api
private IntPtr fd_ppocrv3_wrapper;
[DllImport("fastdeploy.dll",
EntryPoint = "FD_C_CreatePPOCRv3Wrapper")]
private static extern IntPtr FD_C_CreatePPOCRv3Wrapper(
IntPtr det_model, IntPtr cls_model,
IntPtr rec_model);
[DllImport("fastdeploy.dll",
EntryPoint = "FD_C_DestroyPPOCRv3Wrapper")]
private static extern void
FD_C_DestroyPPOCRv3Wrapper(IntPtr fd_ppocrv3_model_wrapper);
[DllImport("fastdeploy.dll",
EntryPoint = "FD_C_PPOCRv3WrapperPredict")]
private static extern bool
FD_C_PPOCRv3WrapperPredict(IntPtr fd_ppocrv3_model_wrapper,
IntPtr img,
ref FD_OCRResult result);
[DllImport("fastdeploy.dll",
EntryPoint = "FD_C_PPOCRv3WrapperInitialized")]
private static extern bool
FD_C_PPOCRv3WrapperInitialized(IntPtr fd_ppocrv3_model_wrapper);
[DllImport("fastdeploy.dll",
EntryPoint = "FD_C_PPOCRv3WrapperBatchPredict")]
private static extern bool
FD_C_PPOCRv3WrapperBatchPredict(IntPtr fd_ppocrv3_model_wrapper,
FD_OneDimMat imgs,
ref FD_OneDimOCRResult batch_result);
[DllImport("fastdeploy.dll",
EntryPoint = "FD_C_DestroyOCRResult")]
private static extern void
FD_C_DestroyOCRResult(ref FD_OCRResult fd_ocr_result);
}
}
}