Files
FastDeploy/csharp/fastdeploy/vision/classification/ppcls/model.cs
chenjian fc15124800 [Doc] add doxygen docs for c sharp api (#1495)
add doxygen docs for c sharp api

Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
2023-04-09 12:32:22 +08:00

166 lines
6.9 KiB
C#

// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
using System;
using System.IO;
using System.Runtime.InteropServices;
using System.Collections.Generic;
using OpenCvSharp;
using fastdeploy.types_internal_c;
namespace fastdeploy {
namespace vision {
namespace classification {
/*! @brief PaddleClas serials model object used when to load a PaddleClas model exported by PaddleClas repository
*/
public class PaddleClasModel {
/** \brief Set path of model file and configuration file, and the configuration of runtime
*
* \param[in] model_file Path of model file, e.g resnet/model.pdmodel
* \param[in] params_file Path of parameter file, e.g resnet/model.pdiparams, if the model format is ONNX, this parameter will be ignored
* \param[in] config_file Path of configuration file for deployment, e.g resnet/infer_cfg.yml
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in `valid_cpu_backends`
* \param[in] model_format Model format of the loaded model, default is Paddle format
*/
public PaddleClasModel(string model_file, string params_file,
string config_file, RuntimeOption custom_option = null,
ModelFormat model_format = ModelFormat.PADDLE) {
if (custom_option == null) {
custom_option = new RuntimeOption();
}
fd_paddleclas_model_wrapper = FD_C_CreatePaddleClasModelWrapper(
model_file, params_file, config_file, custom_option.GetWrapperPtr(),
model_format);
}
~PaddleClasModel() {
FD_C_DestroyPaddleClasModelWrapper(fd_paddleclas_model_wrapper);
}
/// Get model's name
public string ModelName() {
return "PaddleClas/Model";
}
/** \brief DEPRECATED Predict the classification result for an input image, remove at 1.0 version
*
* \param[in] im The input image data, comes from cv::imread()
*
* \return ClassifyResult
*/
public ClassifyResult Predict(Mat img) {
FD_ClassifyResult fd_classify_result = new FD_ClassifyResult();
if(! FD_C_PaddleClasModelWrapperPredict(
fd_paddleclas_model_wrapper, img.CvPtr,
ref fd_classify_result))
{
return null;
} // predict
ClassifyResult classify_result =
ConvertResult.ConvertCResultToClassifyResult(fd_classify_result);
FD_C_DestroyClassifyResult(ref fd_classify_result);
return classify_result;
}
/** \brief Predict the classification results for a batch of input images
*
* \param[in] imgs, The input image list, each element comes from cv::imread()
*
* \return List<ClassifyResult>
*/
public List<ClassifyResult> BatchPredict(List<Mat> imgs){
FD_OneDimMat imgs_in = new FD_OneDimMat();
imgs_in.size = (nuint)imgs.Count;
// Copy data to unmanaged memory
IntPtr[] mat_ptrs = new IntPtr[imgs_in.size];
for(int i=0;i < (int)imgs.Count; i++){
mat_ptrs[i] = imgs[i].CvPtr;
}
int size = Marshal.SizeOf(new IntPtr()) * (int)imgs_in.size;
imgs_in.data = Marshal.AllocHGlobal(size);
Marshal.Copy(mat_ptrs, 0, imgs_in.data,
mat_ptrs.Length);
FD_OneDimClassifyResult fd_classify_result_array = new FD_OneDimClassifyResult();
if (!FD_C_PaddleClasModelWrapperBatchPredict(fd_paddleclas_model_wrapper, imgs_in, ref fd_classify_result_array)){
return null;
}
List<ClassifyResult> results_out = new List<ClassifyResult>();
for(int i=0;i < (int)imgs.Count; i++){
FD_ClassifyResult fd_classify_result = (FD_ClassifyResult)Marshal.PtrToStructure(
fd_classify_result_array.data + i * Marshal.SizeOf(new FD_ClassifyResult()),
typeof(FD_ClassifyResult));
results_out.Add(ConvertResult.ConvertCResultToClassifyResult(fd_classify_result));
FD_C_DestroyClassifyResult(ref fd_classify_result);
}
return results_out;
}
/// Check whether model is initialized successfully
public bool Initialized() {
return FD_C_PaddleClasModelWrapperInitialized(fd_paddleclas_model_wrapper);
}
// below are underlying C api
private IntPtr fd_paddleclas_model_wrapper;
[DllImport("fastdeploy.dll",
EntryPoint = "FD_C_CreatePaddleClasModelWrapper")]
private static extern IntPtr FD_C_CreatePaddleClasModelWrapper(
string model_file, string params_file, string config_file,
IntPtr fd_runtime_option_wrapper, ModelFormat model_format);
[DllImport("fastdeploy.dll",
EntryPoint = "FD_C_DestroyPaddleClasModelWrapper")]
private static extern void
FD_C_DestroyPaddleClasModelWrapper(IntPtr fd_paddleclas_model_wrapper);
[DllImport("fastdeploy.dll",
EntryPoint = "FD_C_PaddleClasModelWrapperPredict")]
private static extern bool
FD_C_PaddleClasModelWrapperPredict(IntPtr fd_paddleclas_model_wrapper,
IntPtr img,
ref FD_ClassifyResult fd_classify_result);
[DllImport("fastdeploy.dll", EntryPoint = "FD_C_CreateClassifyResultWrapper")]
private static extern IntPtr FD_C_CreateClassifyResultWrapper();
[DllImport("fastdeploy.dll",
EntryPoint = "FD_C_DestroyClassifyResultWrapper")]
private static extern void
FD_C_DestroyClassifyResultWrapper(IntPtr fd_classify_result_wrapper);
[DllImport("fastdeploy.dll", EntryPoint = "FD_C_DestroyClassifyResult")]
private static extern void
FD_C_DestroyClassifyResult(ref FD_ClassifyResult fd_classify_result);
[DllImport("fastdeploy.dll",
EntryPoint = "FD_C_ClassifyResultWrapperToCResult")]
private static extern void
FD_C_ClassifyResultWrapperToCResult(IntPtr fd_classify_result_wrapper, ref FD_ClassifyResult fd_classify_result);
[DllImport("fastdeploy.dll",
EntryPoint = "FD_C_CreateClassifyResultWrapperFromCResult")]
private static extern IntPtr
FD_C_CreateClassifyResultWrapperFromCResult(ref FD_ClassifyResult fd_classify_result);
[DllImport("fastdeploy.dll",
EntryPoint = "FD_C_PaddleClasModelWrapperInitialized")]
private static extern bool
FD_C_PaddleClasModelWrapperInitialized(IntPtr fd_paddleclas_model_wrapper);
[DllImport("fastdeploy.dll",
EntryPoint = "FD_C_PaddleClasModelWrapperBatchPredict")]
private static extern bool
FD_C_PaddleClasModelWrapperBatchPredict(IntPtr fd_paddleclas_model_wrapper,
FD_OneDimMat imgs,
ref FD_OneDimClassifyResult results);
}
}
}
}