mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00

* Add tinypose model * Add PPTinypose python API * Fix picodet preprocess bug && Add Tinypose examples * Update tinypose example code * Update ppseg preprocess if condition * Update ppseg backend support type * Update permute.h * Update README.md * Update code with comments * Move files dir * Delete premute.cc * Add single model pptinypose * Delete pptinypose old code in ppdet * Code format * Add ppdet + pptinypose pipeline model * Fix bug for posedetpipeline * Change Frontend to ModelFormat * Change Frontend to ModelFormat in __init__.py * Add python posedetpipeline/ * Update pptinypose example dir name * Update README.md * Update README.md * Update README.md * Update README.md * Create keypointdetection_result.md * Create README.md * Create README.md * Create README.md * Update README.md * Update README.md * Create README.md * Fix det_keypoint_unite_infer.py bug * Create README.md * Update PP-Tinypose by comment * Update by comment * Add pipeline directory * Add pptinypose dir * Update pptinypose to align accuracy * Addd warpAffine processor * Update GetCpuMat to GetOpenCVMat * Add comment for pptinypose && pipline * Update docs/main_page.md * Add README.md for pptinypose * Add README for det_keypoint_unite * Remove ENABLE_PIPELINE option * Remove ENABLE_PIPELINE option * Change pptinypose default backend * PP-TinyPose Pipeline support multi PP-Detection models * Update pp-tinypose comment * Update by comments * Add single test example Co-authored-by: Jason <jiangjiajun@baidu.com>
102 lines
3.6 KiB
C++
102 lines
3.6 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#pragma once
|
|
|
|
#include <opencv2/opencv.hpp>
|
|
#include <set>
|
|
#include <vector>
|
|
#include "fastdeploy/core/fd_tensor.h"
|
|
#include "fastdeploy/utils/utils.h"
|
|
#include "fastdeploy/vision/common/result.h"
|
|
|
|
// #include "unsupported/Eigen/CXX11/Tensor"
|
|
#include "fastdeploy/function/reduce.h"
|
|
#include "fastdeploy/function/softmax.h"
|
|
#include "fastdeploy/function/transpose.h"
|
|
#include "fastdeploy/vision/common/processors/mat.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
namespace utils {
|
|
// topk sometimes is a very small value
|
|
// so this implementation is simple but I don't think it will
|
|
// cost too much time
|
|
// Also there may be cause problem since we suppose the minimum value is
|
|
// -99999999
|
|
// Do not use this function on array which topk contains value less than
|
|
// -99999999
|
|
template <typename T>
|
|
std::vector<int32_t> TopKIndices(const T* array, int array_size, int topk) {
|
|
topk = std::min(array_size, topk);
|
|
std::vector<int32_t> res(topk);
|
|
std::set<int32_t> searched;
|
|
for (int32_t i = 0; i < topk; ++i) {
|
|
T min = -99999999;
|
|
for (int32_t j = 0; j < array_size; ++j) {
|
|
if (searched.find(j) != searched.end()) {
|
|
continue;
|
|
}
|
|
if (*(array + j) > min) {
|
|
res[i] = j;
|
|
min = *(array + j);
|
|
}
|
|
}
|
|
searched.insert(res[i]);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
void NMS(DetectionResult* output, float iou_threshold = 0.5);
|
|
|
|
void NMS(FaceDetectionResult* result, float iou_threshold = 0.5);
|
|
|
|
// MergeSort
|
|
void SortDetectionResult(DetectionResult* output);
|
|
|
|
void SortDetectionResult(FaceDetectionResult* result);
|
|
|
|
// L2 Norm / cosine similarity (for face recognition, ...)
|
|
FASTDEPLOY_DECL std::vector<float> L2Normalize(
|
|
const std::vector<float>& values);
|
|
|
|
FASTDEPLOY_DECL float CosineSimilarity(const std::vector<float>& a,
|
|
const std::vector<float>& b,
|
|
bool normalized = true);
|
|
|
|
bool CropImageByBox(const Mat& src_im, Mat* dst_im,
|
|
const std::vector<float>& box, std::vector<float>* center,
|
|
std::vector<float>* scale, const float expandratio = 0.3);
|
|
|
|
/**
|
|
* Function: for keypoint detection model, fine positioning of keypoints in postprocess
|
|
* Parameters:
|
|
* heatmap: model inference results for keypoint detection models
|
|
* dim: shape information of the inference result
|
|
* coords: coordinates after refined positioning
|
|
* px: px = int(coords[ch * 2] + 0.5) , refer to API detection::GetFinalPredictions
|
|
* py: px = int(coords[ch * 2 + 1] + 0.5), refer to API detection::GetFinalPredictions
|
|
* index: index information of heatmap pixels
|
|
* ch: channel
|
|
* Paper reference: DARK postpocessing, Zhang et al. Distribution-Aware Coordinate
|
|
* Representation for Human Pose Estimation (CVPR 2020).
|
|
*/
|
|
void DarkParse(const std::vector<float>& heatmap, const std::vector<int>& dim,
|
|
std::vector<float>* coords, const int px, const int py,
|
|
const int index, const int ch);
|
|
|
|
} // namespace utils
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|