mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 08:37:06 +08:00

* Add tinypose model * Add PPTinypose python API * Fix picodet preprocess bug && Add Tinypose examples * Update tinypose example code * Update ppseg preprocess if condition * Update ppseg backend support type * Update permute.h * Update README.md * Update code with comments * Move files dir * Delete premute.cc * Add single model pptinypose * Delete pptinypose old code in ppdet * Code format * Add ppdet + pptinypose pipeline model * Fix bug for posedetpipeline * Change Frontend to ModelFormat * Change Frontend to ModelFormat in __init__.py * Add python posedetpipeline/ * Update pptinypose example dir name * Update README.md * Update README.md * Update README.md * Update README.md * Create keypointdetection_result.md * Create README.md * Create README.md * Create README.md * Update README.md * Update README.md * Create README.md * Fix det_keypoint_unite_infer.py bug * Create README.md * Update PP-Tinypose by comment * Update by comment * Add pipeline directory * Add pptinypose dir * Update pptinypose to align accuracy * Addd warpAffine processor * Update GetCpuMat to GetOpenCVMat * Add comment for pptinypose && pipline * Update docs/main_page.md * Add README.md for pptinypose * Add README for det_keypoint_unite * Remove ENABLE_PIPELINE option * Remove ENABLE_PIPELINE option * Change pptinypose default backend * PP-TinyPose Pipeline support multi PP-Detection models * Update pp-tinypose comment * Update by comments * Add single test example Co-authored-by: Jason <jiangjiajun@baidu.com>
91 lines
4.0 KiB
C++
91 lines
4.0 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#pragma once
|
|
#include "fastdeploy/fastdeploy_model.h"
|
|
#include "fastdeploy/vision/common/processors/transform.h"
|
|
#include "fastdeploy/vision/common/result.h"
|
|
|
|
#include "fastdeploy/vision/keypointdet/pptinypose/pptinypose_utils.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
/** \brief All keypoint detection model APIs are defined inside this namespace
|
|
*
|
|
*/
|
|
namespace keypointdetection {
|
|
|
|
/*! @brief PPTinyPose model object used when to load a PPTinyPose model exported by PaddleDetection
|
|
*/
|
|
class FASTDEPLOY_DECL PPTinyPose : public FastDeployModel {
|
|
public:
|
|
/** \brief Set path of model file and configuration file, and the configuration of runtime
|
|
*
|
|
* \param[in] model_file Path of model file, e.g pptinypose/model.pdmodel
|
|
* \param[in] params_file Path of parameter file, e.g pptinypose/model.pdiparams, if the model format is ONNX, this parameter will be ignored
|
|
* \param[in] config_file Path of configuration file for deployment, e.g pptinypose/infer_cfg.yml
|
|
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in `valid_cpu_backends`
|
|
* \param[in] model_format Model format of the loaded model, default is Paddle format
|
|
*/
|
|
PPTinyPose(const std::string& model_file, const std::string& params_file,
|
|
const std::string& config_file,
|
|
const RuntimeOption& custom_option = RuntimeOption(),
|
|
const ModelFormat& model_format = ModelFormat::PADDLE);
|
|
|
|
/// Get model's name
|
|
std::string ModelName() const { return "PaddleDetection/PPTinyPose"; }
|
|
|
|
/** \brief Predict the keypoint detection result for an input image
|
|
*
|
|
* \param[in] im The input image data, comes from cv::imread()
|
|
* \param[in] result The output keypoint detection result will be writen to this structure
|
|
* \return true if the keypoint prediction successed, otherwise false
|
|
*/
|
|
bool Predict(cv::Mat* im, KeyPointDetectionResult* result);
|
|
|
|
/** \brief Predict the keypoint detection result with given detection result for an input image
|
|
*
|
|
* \param[in] im The input image data, comes from cv::imread()
|
|
* \param[in] result The output keypoint detection result will be writen to this structure
|
|
* \param[in] detection_result The structure strores pedestrian detection result, which is used to crop image for multi-persons keypoint detection
|
|
* \return true if the keypoint prediction successed, otherwise false
|
|
*/
|
|
bool Predict(cv::Mat* im, KeyPointDetectionResult* result,
|
|
const DetectionResult& detection_result);
|
|
|
|
/** \brief Whether using Distribution-Aware Coordinate Representation for Human Pose Estimation(DARK for short) in postprocess, default is true
|
|
*/
|
|
bool use_dark = true;
|
|
|
|
protected:
|
|
bool Initialize();
|
|
/// Build the preprocess pipeline from the loaded model
|
|
bool BuildPreprocessPipelineFromConfig();
|
|
/// Preprocess an input image, and set the preprocessed results to `outputs`
|
|
bool Preprocess(Mat* mat, std::vector<FDTensor>* outputs);
|
|
|
|
/// Postprocess the inferenced results, and set the final result to `result`
|
|
bool Postprocess(std::vector<FDTensor>& infer_result,
|
|
KeyPointDetectionResult* result,
|
|
const std::vector<float>& center,
|
|
const std::vector<float>& scale);
|
|
|
|
private:
|
|
std::vector<std::shared_ptr<Processor>> processors_;
|
|
std::string config_file_;
|
|
};
|
|
} // namespace keypointdetection
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|