Files
FastDeploy/fastdeploy/vision/detection/contrib/yolox.h
2022-09-23 11:02:00 +08:00

84 lines
3.0 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/fastdeploy_model.h"
#include "fastdeploy/vision/common/processors/transform.h"
#include "fastdeploy/vision/common/result.h"
namespace fastdeploy {
namespace vision {
namespace detection {
class FASTDEPLOY_DECL YOLOX : public FastDeployModel {
public:
YOLOX(const std::string& model_file, const std::string& params_file = "",
const RuntimeOption& custom_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::ONNX);
std::string ModelName() const { return "YOLOX"; }
virtual bool Predict(cv::Mat* im, DetectionResult* result,
float conf_threshold = 0.25,
float nms_iou_threshold = 0.5);
// tuple of (width, height)
std::vector<int> size;
// padding value, size should be same with Channels
std::vector<float> padding_value;
// whether the model_file was exported with decode module. The official
// YOLOX/tools/export_onnx.py script will export ONNX file without
// decode module. Please set it 'true' manually if the model file
// was exported with decode module.
bool is_decode_exported;
// downsample strides for YOLOX to generate anchors, will take
// (8,16,32) as default values, might have stride=64.
std::vector<int> downsample_strides;
// for offseting the boxes by classes when using NMS, default 4096.
float max_wh;
private:
bool Initialize();
bool Preprocess(Mat* mat, FDTensor* outputs,
std::map<std::string, std::array<float, 2>>* im_info);
bool Postprocess(FDTensor& infer_result, DetectionResult* result,
const std::map<std::string, std::array<float, 2>>& im_info,
float conf_threshold, float nms_iou_threshold);
bool PostprocessWithDecode(
FDTensor& infer_result, DetectionResult* result,
const std::map<std::string, std::array<float, 2>>& im_info,
float conf_threshold, float nms_iou_threshold);
bool IsDynamicInput() const { return is_dynamic_input_; }
// whether to inference with dynamic shape (e.g ONNX export with dynamic shape
// or not.)
// megvii/YOLOX official 'export_onnx.py' script will export static ONNX by
// default.
// while is_dynamic_shape if 'false', is_mini_pad will force 'false'. This
// value will
// auto check by fastdeploy after the internal Runtime already initialized.
bool is_dynamic_input_;
};
} // namespace detection
} // namespace vision
} // namespace fastdeploy