mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 09:07:10 +08:00
84 lines
3.0 KiB
C++
84 lines
3.0 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#pragma once
|
|
|
|
#include "fastdeploy/fastdeploy_model.h"
|
|
#include "fastdeploy/vision/common/processors/transform.h"
|
|
#include "fastdeploy/vision/common/result.h"
|
|
|
|
namespace fastdeploy {
|
|
|
|
namespace vision {
|
|
|
|
namespace detection {
|
|
|
|
class FASTDEPLOY_DECL YOLOX : public FastDeployModel {
|
|
public:
|
|
YOLOX(const std::string& model_file, const std::string& params_file = "",
|
|
const RuntimeOption& custom_option = RuntimeOption(),
|
|
const ModelFormat& model_format = ModelFormat::ONNX);
|
|
|
|
std::string ModelName() const { return "YOLOX"; }
|
|
|
|
virtual bool Predict(cv::Mat* im, DetectionResult* result,
|
|
float conf_threshold = 0.25,
|
|
float nms_iou_threshold = 0.5);
|
|
|
|
// tuple of (width, height)
|
|
std::vector<int> size;
|
|
// padding value, size should be same with Channels
|
|
std::vector<float> padding_value;
|
|
// whether the model_file was exported with decode module. The official
|
|
// YOLOX/tools/export_onnx.py script will export ONNX file without
|
|
// decode module. Please set it 'true' manually if the model file
|
|
// was exported with decode module.
|
|
bool is_decode_exported;
|
|
// downsample strides for YOLOX to generate anchors, will take
|
|
// (8,16,32) as default values, might have stride=64.
|
|
std::vector<int> downsample_strides;
|
|
// for offseting the boxes by classes when using NMS, default 4096.
|
|
float max_wh;
|
|
|
|
private:
|
|
bool Initialize();
|
|
|
|
bool Preprocess(Mat* mat, FDTensor* outputs,
|
|
std::map<std::string, std::array<float, 2>>* im_info);
|
|
|
|
bool Postprocess(FDTensor& infer_result, DetectionResult* result,
|
|
const std::map<std::string, std::array<float, 2>>& im_info,
|
|
float conf_threshold, float nms_iou_threshold);
|
|
|
|
bool PostprocessWithDecode(
|
|
FDTensor& infer_result, DetectionResult* result,
|
|
const std::map<std::string, std::array<float, 2>>& im_info,
|
|
float conf_threshold, float nms_iou_threshold);
|
|
|
|
bool IsDynamicInput() const { return is_dynamic_input_; }
|
|
|
|
// whether to inference with dynamic shape (e.g ONNX export with dynamic shape
|
|
// or not.)
|
|
// megvii/YOLOX official 'export_onnx.py' script will export static ONNX by
|
|
// default.
|
|
// while is_dynamic_shape if 'false', is_mini_pad will force 'false'. This
|
|
// value will
|
|
// auto check by fastdeploy after the internal Runtime already initialized.
|
|
bool is_dynamic_input_;
|
|
};
|
|
|
|
} // namespace detection
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|