mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-07 01:22:59 +08:00

* add yolo cuda preprocessing * cmake build cuda src * yolov5 support cuda preprocessing * yolov5 cuda preprocessing configurable * yolov5 update get mat data api * yolov5 check cuda preprocess args * refactor cuda function name * yolo cuda preprocess padding value configurable * yolov5 release cuda memory * cuda preprocess pybind api update * move use_cuda_preprocessing option to yolov5 model * yolov5lite cuda preprocessing * yolov6 cuda preprocessing * yolov7 cuda preprocessing * yolov7_e2e cuda preprocessing * remove cuda preprocessing in runtime option * refine log and cmake variable name * fix model runtime ptr type Co-authored-by: Jason <jiangjiajun@baidu.com>
93 lines
3.4 KiB
C++
93 lines
3.4 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#pragma once
|
|
#include "fastdeploy/fastdeploy_model.h"
|
|
#include "fastdeploy/vision/common/processors/transform.h"
|
|
#include "fastdeploy/vision/common/result.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
namespace detection {
|
|
|
|
class FASTDEPLOY_DECL YOLOv7 : public FastDeployModel {
|
|
public:
|
|
YOLOv7(const std::string& model_file, const std::string& params_file = "",
|
|
const RuntimeOption& custom_option = RuntimeOption(),
|
|
const ModelFormat& model_format = ModelFormat::ONNX);
|
|
|
|
~YOLOv7();
|
|
|
|
virtual std::string ModelName() const { return "yolov7"; }
|
|
|
|
virtual bool Predict(cv::Mat* im, DetectionResult* result,
|
|
float conf_threshold = 0.25,
|
|
float nms_iou_threshold = 0.5);
|
|
|
|
void UseCudaPreprocessing(int max_img_size = 3840 * 2160);
|
|
|
|
// tuple of (width, height)
|
|
std::vector<int> size;
|
|
// padding value, size should be same with Channels
|
|
std::vector<float> padding_value;
|
|
// only pad to the minimum rectange which height and width is times of stride
|
|
bool is_mini_pad;
|
|
// while is_mini_pad = false and is_no_pad = true, will resize the image to
|
|
// the set size
|
|
bool is_no_pad;
|
|
// if is_scale_up is false, the input image only can be zoom out, the maximum
|
|
// resize scale cannot exceed 1.0
|
|
bool is_scale_up;
|
|
// padding stride, for is_mini_pad
|
|
int stride;
|
|
// for offseting the boxes by classes when using NMS
|
|
float max_wh;
|
|
|
|
private:
|
|
bool Initialize();
|
|
|
|
bool Preprocess(Mat* mat, FDTensor* output,
|
|
std::map<std::string, std::array<float, 2>>* im_info);
|
|
|
|
bool CudaPreprocess(Mat* mat, FDTensor* output,
|
|
std::map<std::string, std::array<float, 2>>* im_info);
|
|
|
|
bool Postprocess(FDTensor& infer_result, DetectionResult* result,
|
|
const std::map<std::string, std::array<float, 2>>& im_info,
|
|
float conf_threshold, float nms_iou_threshold);
|
|
|
|
void LetterBox(Mat* mat, const std::vector<int>& size,
|
|
const std::vector<float>& color, bool _auto,
|
|
bool scale_fill = false, bool scale_up = true,
|
|
int stride = 32);
|
|
|
|
// whether to inference with dynamic shape (e.g ONNX export with dynamic shape
|
|
// or not.)
|
|
// while is_dynamic_shape if 'false', is_mini_pad will force 'false'. This
|
|
// value will
|
|
// auto check by fastdeploy after the internal Runtime already initialized.
|
|
bool is_dynamic_input_;
|
|
// CUDA host buffer for input image
|
|
uint8_t* input_img_cuda_buffer_host_ = nullptr;
|
|
// CUDA device buffer for input image
|
|
uint8_t* input_img_cuda_buffer_device_ = nullptr;
|
|
// CUDA device buffer for TRT input tensor
|
|
float* input_tensor_cuda_buffer_device_ = nullptr;
|
|
// Whether to use CUDA preprocessing
|
|
bool use_cuda_preprocessing_ = false;
|
|
};
|
|
} // namespace detection
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|