Files
FastDeploy/python/fastdeploy/vision/evaluation/utils/seg_metrics.py
2022-09-14 15:44:13 +08:00

144 lines
4.6 KiB
Python

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
def f1_score(intersect_area, pred_area, label_area):
class_f1_sco = []
for i in range(len(intersect_area)):
if pred_area[i] + label_area[i] == 0:
f1_sco = 0
elif pred_area[i] == 0:
f1_sco = 0
else:
prec = intersect_area[i] / pred_area[i]
rec = intersect_area[i] / label_area[i]
f1_sco = 2 * prec * rec / (prec + rec)
class_f1_sco.append(f1_sco)
return np.array(class_f1_sco)
def calculate_area(pred, label, num_classes, ignore_index=255):
"""
Calculate intersect, prediction and label area
Args:
pred (np.ndarray): The prediction by model.
label (np.ndarray): The ground truth of image.
num_classes (int): The unique number of target classes.
ignore_index (int): Specifies a target value that is ignored. Default: 255.
Returns:
Numpy Array: The intersection area of prediction and the ground on all class.
Numpy Array: The prediction area on all class.
Numpy Array: The ground truth area on all class
"""
if not pred.shape == label.shape:
raise ValueError('Shape of `pred` and `label should be equal, '
'but there are {} and {}.'.format(pred.shape,
label.shape))
mask = label != ignore_index
pred = pred + 1
label = label + 1
pred = pred * mask
label = label * mask
pred = np.eye(num_classes + 1)[pred]
label = np.eye(num_classes + 1)[label]
pred = pred[:, 1:]
label = label[:, 1:]
pred_area = []
label_area = []
intersect_area = []
for i in range(num_classes):
pred_i = pred[:, :, i]
label_i = label[:, :, i]
pred_area_i = np.sum(pred_i)
label_area_i = np.sum(label_i)
intersect_area_i = np.sum(pred_i * label_i)
pred_area.append(pred_area_i)
label_area.append(label_area_i)
intersect_area.append(intersect_area_i)
return np.array(intersect_area), np.array(pred_area), np.array(label_area)
def mean_iou(intersect_area, pred_area, label_area):
"""
Calculate iou.
Args:
intersect_area (np.ndarray): The intersection area of prediction and ground truth on all classes.
pred_area (np.ndarray): The prediction area on all classes.
label_area (np.ndarray): The ground truth area on all classes.
Returns:
np.ndarray: iou on all classes.
float: mean iou of all classes.
"""
union = pred_area + label_area - intersect_area
class_iou = []
for i in range(len(intersect_area)):
if union[i] == 0:
iou = 0
else:
iou = intersect_area[i] / union[i]
class_iou.append(iou)
miou = np.mean(class_iou)
return np.array(class_iou), miou
def accuracy(intersect_area, pred_area):
"""
Calculate accuracy
Args:
intersect_area (np.ndarray): The intersection area of prediction and ground truth on all classes..
pred_area (np.ndarray): The prediction area on all classes.
Returns:
np.ndarray: accuracy on all classes.
float: mean accuracy.
"""
class_acc = []
for i in range(len(intersect_area)):
if pred_area[i] == 0:
acc = 0
else:
acc = intersect_area[i] / pred_area[i]
class_acc.append(acc)
macc = np.sum(intersect_area) / np.sum(pred_area)
return np.array(class_acc), macc
def kappa(intersect_area, pred_area, label_area):
"""
Calculate kappa coefficient
Args:
intersect_area (np.ndarray): The intersection area of prediction and ground truth on all classes..
pred_area (np.ndarray): The prediction area on all classes.
label_area (np.ndarray): The ground truth area on all classes.
Returns:
float: kappa coefficient.
"""
total_area = np.sum(label_area)
po = np.sum(intersect_area) / total_area
pe = np.sum(pred_area * label_area) / (total_area * total_area)
kappa = (po - pe) / (1 - pe)
return kappa