Files
FastDeploy/python/fastdeploy/vision/evaluation/utils/coco_metrics.py
2022-09-14 15:44:13 +08:00

90 lines
2.9 KiB
Python

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import copy
import sys
from collections import OrderedDict
from .coco_utils import get_infer_results, cocoapi_eval
class COCOMetric(object):
def __init__(self, coco_gt, **kwargs):
self.clsid2catid = {
i: cat['id']
for i, cat in enumerate(coco_gt.loadCats(coco_gt.getCatIds()))
}
self.coco_gt = coco_gt
self.classwise = kwargs.get('classwise', False)
self.bias = 0
self.reset()
def reset(self):
# only bbox and mask evaluation support currently
self.details = {
'gt': copy.deepcopy(self.coco_gt.dataset),
'bbox': [],
'mask': []
}
self.eval_stats = {}
def update(self, im_id, outputs):
outs = {}
# outputs Tensor -> numpy.ndarray
for k, v in outputs.items():
outs[k] = v
outs['im_id'] = im_id
infer_results = get_infer_results(
outs, self.clsid2catid, bias=self.bias)
self.details['bbox'] += infer_results[
'bbox'] if 'bbox' in infer_results else []
self.details['mask'] += infer_results[
'mask'] if 'mask' in infer_results else []
def accumulate(self):
if len(self.details['bbox']) > 0:
bbox_stats = cocoapi_eval(
copy.deepcopy(self.details['bbox']),
'bbox',
coco_gt=self.coco_gt,
classwise=self.classwise)
self.eval_stats['bbox'] = bbox_stats
sys.stdout.flush()
if len(self.details['mask']) > 0:
seg_stats = cocoapi_eval(
copy.deepcopy(self.details['mask']),
'segm',
coco_gt=self.coco_gt,
classwise=self.classwise)
self.eval_stats['mask'] = seg_stats
sys.stdout.flush()
def log(self):
pass
def get(self):
if 'bbox' not in self.eval_stats:
return {'bbox_mmap': 0.}
if 'mask' in self.eval_stats:
return OrderedDict(
zip(['bbox_mmap', 'segm_mmap'],
[self.eval_stats['bbox'][0], self.eval_stats['mask'][0]]))
else:
return {'bbox_mmap': self.eval_stats['bbox'][0]}