mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00
90 lines
2.9 KiB
Python
90 lines
2.9 KiB
Python
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import copy
|
|
import sys
|
|
from collections import OrderedDict
|
|
from .coco_utils import get_infer_results, cocoapi_eval
|
|
|
|
|
|
class COCOMetric(object):
|
|
def __init__(self, coco_gt, **kwargs):
|
|
self.clsid2catid = {
|
|
i: cat['id']
|
|
for i, cat in enumerate(coco_gt.loadCats(coco_gt.getCatIds()))
|
|
}
|
|
self.coco_gt = coco_gt
|
|
self.classwise = kwargs.get('classwise', False)
|
|
self.bias = 0
|
|
self.reset()
|
|
|
|
def reset(self):
|
|
# only bbox and mask evaluation support currently
|
|
self.details = {
|
|
'gt': copy.deepcopy(self.coco_gt.dataset),
|
|
'bbox': [],
|
|
'mask': []
|
|
}
|
|
self.eval_stats = {}
|
|
|
|
def update(self, im_id, outputs):
|
|
outs = {}
|
|
# outputs Tensor -> numpy.ndarray
|
|
for k, v in outputs.items():
|
|
outs[k] = v
|
|
|
|
outs['im_id'] = im_id
|
|
infer_results = get_infer_results(
|
|
outs, self.clsid2catid, bias=self.bias)
|
|
self.details['bbox'] += infer_results[
|
|
'bbox'] if 'bbox' in infer_results else []
|
|
self.details['mask'] += infer_results[
|
|
'mask'] if 'mask' in infer_results else []
|
|
|
|
def accumulate(self):
|
|
if len(self.details['bbox']) > 0:
|
|
bbox_stats = cocoapi_eval(
|
|
copy.deepcopy(self.details['bbox']),
|
|
'bbox',
|
|
coco_gt=self.coco_gt,
|
|
classwise=self.classwise)
|
|
self.eval_stats['bbox'] = bbox_stats
|
|
sys.stdout.flush()
|
|
|
|
if len(self.details['mask']) > 0:
|
|
seg_stats = cocoapi_eval(
|
|
copy.deepcopy(self.details['mask']),
|
|
'segm',
|
|
coco_gt=self.coco_gt,
|
|
classwise=self.classwise)
|
|
self.eval_stats['mask'] = seg_stats
|
|
sys.stdout.flush()
|
|
|
|
def log(self):
|
|
pass
|
|
|
|
def get(self):
|
|
if 'bbox' not in self.eval_stats:
|
|
return {'bbox_mmap': 0.}
|
|
if 'mask' in self.eval_stats:
|
|
return OrderedDict(
|
|
zip(['bbox_mmap', 'segm_mmap'],
|
|
[self.eval_stats['bbox'][0], self.eval_stats['mask'][0]]))
|
|
else:
|
|
return {'bbox_mmap': self.eval_stats['bbox'][0]}
|