Files
FastDeploy/fastdeploy/model_executor/models/qwen3moe.py
Yuanle Liu b455fd39f3
Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Deploy GitHub Pages / deploy (push) Has been cancelled
register_model_class compatible with plugins (#4236)
2025-09-24 11:17:12 +08:00

555 lines
20 KiB
Python

"""
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
from __future__ import annotations
import re
from functools import partial
import paddle
from paddle import nn
from paddleformers.transformers import PretrainedModel
from paddleformers.utils.log import logger
from fastdeploy.config import FDConfig
from fastdeploy.model_executor.forward_meta import ForwardMeta
from fastdeploy.model_executor.graph_optimization.decorator import (
support_graph_optimization,
)
from fastdeploy.model_executor.layers.activation import SiluAndMul
from fastdeploy.model_executor.layers.embeddings import VocabParallelEmbedding
from fastdeploy.model_executor.layers.linear import (
MergedColumnParallelLinear,
ReplicatedLinear,
RowParallelLinear,
)
from fastdeploy.model_executor.layers.lm_head import ParallelLMHead
from fastdeploy.model_executor.layers.moe.moe import FusedMoE
from fastdeploy.model_executor.layers.normalization import RMSNorm
from fastdeploy.model_executor.models.model_base import (
ModelCategory,
ModelForCasualLM,
ModelRegistry,
)
from fastdeploy.model_executor.models.qwen3 import Qwen3Attention
class Qwen3MoeBlock(nn.Layer):
def __init__(
self,
fd_config: FDConfig,
layer_id: int,
prefix: str = "",
) -> None:
super().__init__()
self.expert_parallel_size = fd_config.parallel_config.expert_parallel_size
self.tensor_parallel_size = fd_config.parallel_config.tensor_parallel_size
self.tensor_parallel_rank = fd_config.parallel_config.tensor_parallel_rank
self.tp_group = fd_config.parallel_config.tp_group
self.use_ep = self.expert_parallel_size > 1
self.use_tp = self.tensor_parallel_size > 1
weight_key_map = {
"up_gate_proj_expert_weight_key": f"{prefix}.experts.{{}}.up_gate_proj.weight",
"down_proj_expert_weight_key": f"{prefix}.experts.{{}}.down_proj.weight",
}
self.experts = FusedMoE(
fd_config,
moe_intermediate_size=fd_config.model_config.moe_intermediate_size,
num_experts=fd_config.model_config.num_experts,
top_k=fd_config.model_config.num_experts_per_tok,
layer_idx=layer_id,
weight_key_map=weight_key_map,
)
self.gate = ReplicatedLinear(
fd_config=fd_config,
prefix=f"{prefix}.gate",
input_size=fd_config.model_config.hidden_size,
output_size=fd_config.model_config.num_experts,
with_bias=False,
skip_quant=True,
weight_dtype="float32",
)
def split_allgather_out(self, hidden_states: paddle.Tensor, token_num: int):
token_num_per_rank = (token_num + self.tensor_parallel_size - 1) // self.tensor_parallel_size
# AllGather will hang when the data shapes on multi-ranks are different!
part_hidden_states = paddle.zeros(
shape=[token_num_per_rank, hidden_states.shape[1]], dtype=hidden_states.dtype
)
start_offset = self.tensor_parallel_rank * token_num_per_rank
end_offset = (self.tensor_parallel_rank + 1) * token_num_per_rank
if end_offset > token_num:
end_offset = token_num
part_hidden_states[: (end_offset - start_offset), :] = hidden_states[start_offset:end_offset, :]
out = self.experts(part_hidden_states, self.gate)
multi_outs = []
paddle.distributed.all_gather(multi_outs, out, self.tp_group)
out = paddle.concat(multi_outs, axis=0)
out = out[:token_num, :]
return out
def forward(self, x):
token_num = x.shape[0]
if self.use_ep and self.use_tp and token_num >= self.tensor_parallel_size:
out = self.split_allgather_out(x, token_num)
else:
out = self.experts(x, self.gate)
return out
def load_state_dict(self, state_dict):
""" """
self.gate.load_state_dict(state_dict)
self.experts.load_state_dict(state_dict)
class Qwen3MLP(nn.Layer):
""" """
def __init__(
self,
fd_config: FDConfig,
prefix: str = "",
) -> None:
super().__init__()
self.nranks = fd_config.parallel_config.tensor_parallel_size
self.up_gate_proj = MergedColumnParallelLinear(
fd_config,
prefix=f"{prefix}.up_gate_proj",
input_size=fd_config.model_config.hidden_size,
output_size=fd_config.model_config.intermediate_size * 2,
with_bias=False,
activation=fd_config.model_config.hidden_act,
)
self.down_proj = RowParallelLinear(
fd_config,
prefix=f"{prefix}.down_proj",
input_size=fd_config.model_config.intermediate_size,
output_size=fd_config.model_config.hidden_size,
with_bias=False,
)
self.act_fn = SiluAndMul(
fd_config,
bias=getattr(self.up_gate_proj, "bias", None),
act_method=fd_config.model_config.hidden_act,
)
def load_state_dict(self, state_dict):
""" """
self.up_gate_proj.load_state_dict(state_dict)
self.down_proj.load_state_dict(state_dict)
def forward(self, x):
""" """
gate_up_out = self.up_gate_proj(x)
act_out = self.act_fn(gate_up_out)
down_out = self.down_proj(act_out)
return down_out
class Qwen3DecoderLayer(nn.Layer):
""" """
def __init__(
self,
fd_config: FDConfig,
prefix: str = "",
) -> None:
super().__init__()
layer_id = int(prefix.split(sep=".")[-1])
self.self_attn = Qwen3Attention(
fd_config=fd_config,
layer_id=layer_id,
prefix=f"{prefix}.self_attn",
)
mlp_only_layers = (
[] if not hasattr(fd_config.model_config, "mlp_only_layers") else fd_config.model_config.mlp_only_layers
)
if (layer_id not in mlp_only_layers) and (
fd_config.model_config.num_experts > 0 and (layer_id + 1) % fd_config.model_config.decoder_sparse_step == 0
):
self.mlp = Qwen3MoeBlock(fd_config, layer_id, prefix=f"{prefix}.mlp")
else:
self.mlp = Qwen3MLP(
fd_config,
prefix=f"{prefix}.mlp",
)
self.input_layernorm = RMSNorm(
fd_config,
hidden_size=fd_config.model_config.hidden_size,
eps=1e-6,
prefix=f"{prefix}.input_layernorm",
)
self.post_attention_layernorm = RMSNorm(
fd_config,
hidden_size=fd_config.model_config.hidden_size,
eps=1e-6,
prefix=f"{prefix}.post_attention_layernorm",
)
def load_state_dict(self, state_dict):
""" """
self.self_attn.load_state_dict(state_dict)
self.mlp.load_state_dict(state_dict)
self.input_layernorm.load_state_dict(state_dict)
self.post_attention_layernorm.load_state_dict(state_dict)
def forward(
self,
forward_meta: ForwardMeta,
hidden_states: paddle.Tensor,
residual: paddle.Tensor = None,
):
""" """
if residual is None:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
else:
hidden_states, residual = self.input_layernorm(hidden_states, residual)
hidden_states = self.self_attn(
hidden_states=hidden_states,
forward_meta=forward_meta,
)
# Fully Connected
hidden_states, residual = self.post_attention_layernorm(hidden_states, residual)
hidden_states = self.mlp(hidden_states)
return hidden_states, residual
@support_graph_optimization
class Qwen3MoeModel(nn.Layer):
""" """
def __init__(
self,
fd_config: FDConfig = None,
):
"""
Initializer for the Qwen2Model class.
Args:
"""
super().__init__()
self.num_layers = fd_config.model_config.num_hidden_layers
fd_config.model_config.pretrained_config.prefix_name = "model"
self.embed_tokens = VocabParallelEmbedding(
fd_config,
num_embeddings=fd_config.model_config.vocab_size,
embedding_dim=fd_config.model_config.hidden_size,
params_dtype=paddle.get_default_dtype,
prefix=(f"{fd_config.model_config.pretrained_config.prefix_name}.embed_tokens"),
)
self.layers = nn.LayerList(
[
Qwen3DecoderLayer(
fd_config,
prefix=f"{fd_config.model_config.pretrained_config.prefix_name}.layers.{i}",
)
for i in range(self.num_layers)
]
)
self.norm = RMSNorm(
fd_config,
hidden_size=fd_config.model_config.hidden_size,
eps=1e-6,
prefix=f"{fd_config.model_config.pretrained_config.prefix_name}.norm",
)
def load_state_dict(self, state_dict):
"""
Load model parameters from a given state dictionary.
Args:
state_dict (dict[str, np.ndarray | paddle.Tensor]):
A dictionary containing model parameters, where keys are parameter names
and values are NumPy arrays or PaddlePaddle tensors.
"""
self.embed_tokens.load_state_dict(state_dict)
self.norm.load_state_dict(state_dict)
for i in range(self.num_layers):
logger.info(f"Start load layer {i}")
self.layers[i].load_state_dict(state_dict)
def forward(
self,
ids_remove_padding: paddle.Tensor,
forward_meta: ForwardMeta,
):
""" """
hidden_states = self.embed_tokens(ids_remove_padding=ids_remove_padding)
residual = None
for i in range(self.num_layers):
hidden_states, residual = self.layers[i](forward_meta, hidden_states, residual)
hidden_states = hidden_states + residual
out = self.norm(hidden_states)
return out
@ModelRegistry.register_model_class(
architecture="Qwen3MoeForCausalLM",
module_name="qwen3moe",
category=ModelCategory.TEXT_GENERATION,
primary_use=ModelCategory.TEXT_GENERATION,
)
class Qwen3MoeForCausalLM(ModelForCasualLM):
"""
Qwen3MoeForCausalLM
"""
def __init__(self, fd_config: FDConfig):
"""
Args:
fd_config (FDConfig): Configurations for the LLM model.
"""
super(Qwen3MoeForCausalLM, self).__init__(fd_config)
self.model = Qwen3MoeModel(fd_config)
self.ori_vocab_size = fd_config.model_config.ori_vocab_size
self.lm_head = ParallelLMHead(
fd_config,
embedding_dim=fd_config.model_config.hidden_size,
num_embeddings=fd_config.model_config.vocab_size,
prefix="lm_head",
)
@classmethod
def name(self):
""" """
return "Qwen3MoeForCausalLM"
def get_expert_mapping(
self,
) -> list[tuple[str, str, int, str]]:
# (param_name, weight_name, expert_id, shard_id)
return FusedMoE.make_expert_params_mapping(
num_experts=self.fd_config.model_config.num_experts,
ckpt_gate_proj_name="gate_proj",
ckpt_down_proj_name="down_proj",
ckpt_up_proj_name="up_proj",
param_gate_up_proj_name="experts.up_gate_proj_",
param_down_proj_name="experts.down_proj_",
)
@paddle.no_grad()
def load_weights(self, weights_iterator) -> None:
"""
Load model parameters from a given weights_iterator object.
Args:
weights_iterator (Iterator): An iterator yielding (name, weight) pairs.
"""
from fastdeploy.model_executor.utils import (
default_weight_loader,
process_weights_after_loading,
)
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
("up_gate_proj", "gate_proj", "gate"),
("up_gate_proj", "up_proj", "up"),
("embed_tokens.embeddings", "embed_tokens", None),
("lm_head.linear", "lm_head", None),
]
expert_params_mapping = self.get_expert_mapping()
params_dict = dict(self.named_parameters())
process_weights_after_loading_fn = process_weights_after_loading(dict(self.named_sublayers()))
for loaded_weight_name, loaded_weight in weights_iterator:
for param_name, weight_name, shard_id in stacked_params_mapping:
if weight_name not in loaded_weight_name:
continue
if "mlp.experts" in loaded_weight_name:
continue
model_param_name = loaded_weight_name.replace(weight_name, param_name)
if model_param_name not in params_dict:
continue
param = params_dict[model_param_name]
weight_loader = getattr(param, "weight_loader", default_weight_loader(self.fd_config))
weight_loader(param, loaded_weight, shard_id)
break
else:
for mapping in expert_params_mapping:
param_name, weight_name, expert_id, shard_id = mapping
if weight_name not in loaded_weight_name:
continue
model_param_name = loaded_weight_name.replace(weight_name, param_name)
if model_param_name not in params_dict:
continue
param = params_dict[model_param_name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id=shard_id, expert_id=expert_id)
break
else:
model_param_name = loaded_weight_name
if model_param_name not in params_dict:
continue
param = params_dict[model_param_name]
weight_loader = getattr(param, "weight_loader", default_weight_loader(self.fd_config))
weight_loader(param, loaded_weight)
model_sublayer_name = re.sub(r"\.(up_gate_proj_weight|down_proj_weight|weight)$", "", model_param_name)
process_weights_after_loading_fn(model_sublayer_name, param)
@paddle.no_grad()
def set_state_dict(self, state_dict):
"""
Load model parameters from a given state dictionary.
Args:
state_dict (dict[str, np.ndarray | paddle.Tensor]):
A dictionary containing model parameters, where keys are parameter names
and values are NumPy arrays or PaddlePaddle tensors.
"""
self.model.load_state_dict(state_dict)
self.lm_head.load_state_dict(state_dict)
def compute_logits(self, hidden_states: paddle.Tensor):
""" """
logits = self.lm_head(hidden_states)
logits = logits.astype(paddle.float32)
logits[:, self.ori_vocab_size :] = -float("inf")
return logits
def forward(
self,
ids_remove_padding: paddle.Tensor,
forward_meta: ForwardMeta,
):
""" """
hidden_states = self.model(ids_remove_padding=ids_remove_padding, forward_meta=forward_meta)
return hidden_states
def clear_grpah_opt_backend(self):
"""Clear graph optimization backend, the captured cuda graph will be cleaned"""
self.model.clear_grpah_opt_backend(fd_config=self.fd_config)
class Qwen3MoePretrainedModel(PretrainedModel):
"""
Qwen3MoePretrainedModel
"""
config_class = FDConfig
def _init_weight(self, layer):
"""
_init_weight
"""
return None
@classmethod
def arch_name(self):
return "Qwen3MoeForCausalLM"
@classmethod
def _get_tensor_parallel_mappings(cls, config, is_split=True):
# TODO not support TP split now, next PR will support TP.
from paddleformers.transformers.conversion_utils import split_or_merge_func
fn = split_or_merge_func(
is_split=is_split,
tensor_parallel_degree=config.tensor_parallel_degree,
tensor_parallel_rank=config.tensor_parallel_rank,
num_attention_heads=config.num_attention_heads,
)
def get_tensor_parallel_split_mappings(num_layers, num_experts):
final_actions = {}
base_actions = {
"lm_head.weight": partial(fn, is_column=True),
# Row Linear
"embed_tokens.weight": partial(fn, is_column=False),
"layers.0.self_attn.o_proj.weight": partial(fn, is_column=False),
}
# Column Linear
config.fuse_attention_qkv = False
if config.fuse_attention_qkv:
base_actions["layers.0.self_attn.qkv_proj.weight"] = partial(fn, is_column=True)
else:
base_actions["layers.0.self_attn.q_proj.weight"] = partial(fn, is_column=True)
base_actions["layers.0.self_attn.q_proj.bias"] = partial(fn, is_column=True)
# if we have enough num_key_value_heads to split, then split it.
if config.num_key_value_heads % config.tensor_parallel_degree == 0:
base_actions["layers.0.self_attn.k_proj.weight"] = partial(fn, is_column=True)
base_actions["layers.0.self_attn.v_proj.weight"] = partial(fn, is_column=True)
base_actions["layers.0.self_attn.k_proj.bias"] = partial(fn, is_column=True)
base_actions["layers.0.self_attn.v_proj.bias"] = partial(fn, is_column=True)
for key, action in base_actions.items():
if "layers.0." in key:
for i in range(num_layers):
final_actions[key.replace("layers.0.", f"layers.{i}.")] = action
final_actions[key] = action
base_actions = {
"layers.0.mlp.experts.0.gate_proj.weight": partial(fn, is_column=True),
"layers.0.mlp.experts.0.down_proj.weight": partial(fn, is_column=False),
"layers.0.mlp.experts.0.up_proj.weight": partial(fn, is_column=True),
}
for key, action in base_actions.items():
for i in range(num_layers):
newkey = key.replace("layers.0.", f"layers.{i}.")
for j in range(num_experts):
newkey2 = newkey.replace("experts.0.", f"experts.{j}.")
final_actions[newkey2] = action
return final_actions
num_experts = 0
if isinstance(config.num_experts, list):
num_experts = sum(config.num_experts)
elif isinstance(config.num_experts, int):
num_experts = config.num_experts
else:
raise ValueError(f"Not support type of num_experts [{type(config.num_experts)}]")
mappings = get_tensor_parallel_split_mappings(config.num_hidden_layers, num_experts)
return mappings