mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-26 20:41:53 +08:00

Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Deploy GitHub Pages / deploy (push) Has been cancelled
394 lines
14 KiB
Python
394 lines
14 KiB
Python
"""
|
|
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
@@ -12,31 +11,265 @@
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
import importlib
|
|
from abc import ABC, abstractmethod
|
|
from dataclasses import dataclass
|
|
from enum import Enum
|
|
from functools import lru_cache
|
|
from typing import Dict, List, Optional, Tuple, Type, Union
|
|
|
|
import numpy as np
|
|
import paddle
|
|
from paddle import nn
|
|
from paddleformers.transformers import PretrainedModel
|
|
|
|
from fastdeploy.config import (
|
|
ModelConfig,
|
|
iter_architecture_defaults,
|
|
try_match_architecture_defaults,
|
|
)
|
|
from fastdeploy.model_executor.models.interfaces_base import (
|
|
determine_model_category,
|
|
get_default_pooling_type,
|
|
is_multimodal_model,
|
|
is_pooling_model,
|
|
is_text_generation_model,
|
|
)
|
|
|
|
|
|
class ModelCategory(Enum):
|
|
TEXT_GENERATION = "text_generation"
|
|
MULTIMODAL = "multimodal"
|
|
EMBEDDING = "embedding"
|
|
|
|
|
|
@dataclass(frozen=True)
|
|
class ModelInfo:
|
|
architecture: str
|
|
category: ModelCategory
|
|
is_text_generation: bool
|
|
is_multimodal: bool
|
|
is_pooling: bool
|
|
module_path: str
|
|
default_pooling_type: str
|
|
|
|
@staticmethod
|
|
def from_model_cls(model_cls: Type[nn.Layer], module_path: str = "") -> "ModelInfo":
|
|
return ModelInfo(
|
|
architecture=model_cls.__name__,
|
|
category=determine_model_category(model_cls.__name__),
|
|
is_text_generation=is_text_generation_model(model_cls),
|
|
is_multimodal=is_multimodal_model(model_cls.__name__),
|
|
is_pooling=is_pooling_model(model_cls),
|
|
default_pooling_type=get_default_pooling_type(model_cls),
|
|
module_path=module_path,
|
|
)
|
|
|
|
|
|
class BaseRegisteredModel(ABC):
|
|
"""Base class for registered models"""
|
|
|
|
@abstractmethod
|
|
def load_model_cls(self) -> Type[nn.Layer]:
|
|
raise NotImplementedError
|
|
|
|
@abstractmethod
|
|
def inspect_model_cls(self) -> ModelInfo:
|
|
raise NotImplementedError
|
|
|
|
|
|
@dataclass(frozen=True)
|
|
class LazyRegisteredModel(BaseRegisteredModel):
|
|
"""Lazy loaded model"""
|
|
|
|
module_name: str
|
|
module_path: str
|
|
class_name: str
|
|
|
|
def load_model_cls(self) -> Type[nn.Layer]:
|
|
try:
|
|
full_module = f"{self.module_path}.{self.module_name}"
|
|
module = importlib.import_module(full_module)
|
|
return getattr(module, self.class_name)
|
|
except (ImportError, AttributeError) as e:
|
|
raise ImportError(f"Failed to load {self.class_name}: {e}")
|
|
|
|
def inspect_model_cls(self) -> ModelInfo:
|
|
model_cls = self.load_model_cls()
|
|
return ModelInfo.from_model_cls(model_cls, self.module_name)
|
|
|
|
|
|
@lru_cache(maxsize=128)
|
|
def _try_inspect_model_cls(
|
|
model_arch: str,
|
|
model: BaseRegisteredModel,
|
|
) -> Optional[ModelInfo]:
|
|
try:
|
|
return model.inspect_model_cls()
|
|
except Exception:
|
|
print("Error in inspecting model architecture '%s'", model_arch)
|
|
return None
|
|
|
|
|
|
class ModelRegistry:
|
|
_arch_to_model_cls = {}
|
|
_arch_to_pretrained_model_cls = {}
|
|
_enhanced_models: Dict[str, Dict] = {}
|
|
|
|
def __init__(self):
|
|
self.models: Dict[str, BaseRegisteredModel] = {}
|
|
self.pretrained_models: Dict[str, Type[PretrainedModel]] = {}
|
|
self._registered_models: Dict[str, BaseRegisteredModel] = {}
|
|
self._register_enhanced_models()
|
|
|
|
def _register_enhanced_models(self):
|
|
for arch, model_info in self._enhanced_models.items():
|
|
model = LazyRegisteredModel(
|
|
module_name=model_info["module_name"],
|
|
module_path=model_info["module_path"],
|
|
class_name=model_info["class_name"],
|
|
)
|
|
self.models[arch] = model
|
|
self._registered_models[arch] = model
|
|
|
|
@lru_cache(maxsize=128)
|
|
def _try_load_model_cls(self, architecture: str) -> Optional[Type[nn.Layer]]:
|
|
if architecture not in self.models:
|
|
return None
|
|
try:
|
|
return self.models[architecture].load_model_cls()
|
|
except Exception as e:
|
|
print(f"Failed to load model {architecture}: {e}")
|
|
return None
|
|
|
|
@lru_cache(maxsize=128)
|
|
def _try_inspect_model_cls(self, model_arch: str) -> Optional[ModelInfo]:
|
|
if model_arch not in self.models:
|
|
return None
|
|
try:
|
|
return self.models[model_arch].inspect_model_cls()
|
|
except Exception as e:
|
|
print(f"Failed to inspect model {model_arch}: {e}")
|
|
return None
|
|
|
|
def _normalize_arch(self, architecture: str, model_config: ModelConfig) -> str:
|
|
if architecture in self.models:
|
|
return architecture
|
|
|
|
match = try_match_architecture_defaults(
|
|
architecture,
|
|
runner_type=getattr(model_config, "runner_type", None),
|
|
convert_type=getattr(model_config, "convert_type", None),
|
|
)
|
|
if match:
|
|
suffix, _ = match
|
|
for repl_suffix, _ in iter_architecture_defaults():
|
|
base_arch = architecture.replace(suffix, repl_suffix)
|
|
if base_arch in self.models:
|
|
return base_arch
|
|
|
|
return architecture
|
|
|
|
def _raise_for_unsupported(self, architectures: list[str]):
|
|
all_supported_archs = self.get_supported_archs()
|
|
|
|
if any(arch in all_supported_archs for arch in architectures):
|
|
raise ValueError(
|
|
f"Model architectures {architectures} failed to be inspected. "
|
|
"Please check the logs for more details."
|
|
)
|
|
|
|
raise ValueError(
|
|
f"Model architectures {architectures} are not supported for now. "
|
|
f"Supported architectures: {all_supported_archs}"
|
|
)
|
|
|
|
def inspect_model_cls(
|
|
self, architectures: Union[str, List[str]], model_config: ModelConfig = None
|
|
) -> Tuple[ModelInfo, str]:
|
|
if isinstance(architectures, str):
|
|
architectures = [architectures]
|
|
|
|
if not architectures:
|
|
raise ValueError("No model architectures are specified")
|
|
|
|
for arch in architectures:
|
|
normalized_arch = self._normalize_arch(arch, model_config)
|
|
model_info = self._try_inspect_model_cls(normalized_arch)
|
|
if model_info is not None:
|
|
return (model_info, arch)
|
|
|
|
return self._raise_for_unsupported(architectures)
|
|
|
|
@classmethod
|
|
def register_model_class(
|
|
cls,
|
|
model_class=None,
|
|
*,
|
|
architecture: str = None,
|
|
module_name: str = None,
|
|
module_path: str = "fastdeploy.model_executor.models",
|
|
category: Union[ModelCategory, List[ModelCategory]] = ModelCategory.TEXT_GENERATION,
|
|
primary_use: ModelCategory = None,
|
|
):
|
|
"""
|
|
Enhanced model class registration supporting both traditional and decorator-style registration.
|
|
|
|
Can be used as:
|
|
1. Traditional decorator: @ModelRegistry.register_model_class
|
|
2. Enhanced decorator with metadata: @ModelRegistry.register_model_class(architecture="...", module_path="...")
|
|
|
|
Args:
|
|
model_class: The model class (when used as simple decorator)
|
|
architecture (str): Unique identifier for the model architecture
|
|
module_name (str): Relative path to the module containing the model
|
|
module_path (str): Absolute path to the module containing the model
|
|
category: Model category or list of categories
|
|
primary_use: Primary category for multi-category models
|
|
"""
|
|
|
|
def _register(model_cls):
|
|
# Traditional registration for ModelForCasualLM subclasses
|
|
if issubclass(model_cls, ModelForCasualLM) and model_cls is not ModelForCasualLM:
|
|
cls._arch_to_model_cls[model_cls.name()] = model_cls
|
|
|
|
# Enhanced decorator-style registration
|
|
if architecture and module_name:
|
|
categories = category if isinstance(category, list) else [category]
|
|
|
|
# Register main entry
|
|
arch_key = architecture
|
|
cls._enhanced_models[arch_key] = {
|
|
"class_name": model_cls.__name__,
|
|
"module_name": module_name,
|
|
"module_path": module_path,
|
|
"category": primary_use or categories[0],
|
|
"class": model_cls,
|
|
}
|
|
|
|
# Register category-specific entries for multi-category models
|
|
if len(categories) > 1:
|
|
for cat in categories:
|
|
key = f"{arch_key}_{cat.value}"
|
|
cls._enhanced_models[key] = {
|
|
"class_name": model_cls.__name__,
|
|
"module_name": module_name,
|
|
"module_path": module_path,
|
|
"category": cat,
|
|
"primary_use": primary_use or categories[0],
|
|
"class": model_cls,
|
|
}
|
|
return model_cls
|
|
|
|
if model_class is not None:
|
|
return _register(model_class)
|
|
else:
|
|
return _register
|
|
|
|
@classmethod
|
|
def register_pretrained_model(cls, pretrained_model):
|
|
"""register pretrained model class"""
|
|
if (
|
|
issubclass(pretrained_model, PretrainedModel)
|
|
and pretrained_model is not PretrainedModel
|
|
and hasattr(pretrained_model, "arch_name")
|
|
):
|
|
cls._arch_to_pretrained_model_cls[pretrained_model.arch_name()] = pretrained_model
|
|
|
|
return pretrained_model
|
|
|
|
@classmethod
|
|
def get_class(cls, name):
|
|
"""get model class"""
|
|
if name not in cls._arch_to_model_cls:
|
|
raise ValueError(f"Model '{name}' is not registered!")
|
|
return cls._arch_to_model_cls[name]
|
|
|
|
@classmethod
|
|
def get_pretrain_cls(cls, architectures: str):
|
|
"""get_pretrain_cls"""
|
|
return cls._arch_to_pretrained_model_cls[architectures]
|
|
|
|
@classmethod
|
|
def get_supported_archs(cls):
|
|
traditional_archs = list(cls._arch_to_model_cls.keys())
|
|
enhanced_archs = list(cls._enhanced_models.keys())
|
|
return traditional_archs + enhanced_archs
|
|
|
|
def resolve_model_cls(self, architectures: Union[str, List[str]]) -> Tuple[Type[nn.Layer], str]:
|
|
"""Resolve model class"""
|
|
if isinstance(architectures, str):
|
|
architectures = [architectures]
|
|
|
|
for arch in architectures:
|
|
model_cls = self._try_load_model_cls(arch)
|
|
if model_cls is not None:
|
|
return model_cls, arch
|
|
|
|
raise ValueError(f"Cannot find supported model: {architectures}")
|
|
|
|
def is_multimodal_model(self, architectures: Union[str, List[str]], model_config: ModelConfig = None) -> bool:
|
|
"""Check if it's a multimodal model"""
|
|
if isinstance(architectures, str):
|
|
architectures = [architectures]
|
|
|
|
for arch in architectures:
|
|
model_info = self._try_inspect_model_cls(arch)
|
|
if model_info is not None:
|
|
return model_info.is_multimodal
|
|
return False
|
|
|
|
def is_text_generation_model(self, architectures: Union[str, List[str]], model_config: ModelConfig = None) -> bool:
|
|
"""Check if it's a text generation model"""
|
|
if isinstance(architectures, str):
|
|
architectures = [architectures]
|
|
|
|
for arch in architectures:
|
|
model_info = self._try_inspect_model_cls(arch)
|
|
if model_info is not None:
|
|
return model_info.is_text_generation
|
|
return False
|
|
|
|
def is_pooling_model(self, architectures: Union[str, List[str]], model_config: ModelConfig = None) -> bool:
|
|
"""Check if it's a pooling model"""
|
|
if isinstance(architectures, str):
|
|
architectures = [architectures]
|
|
|
|
for arch in architectures:
|
|
model_info = self._try_inspect_model_cls(arch)
|
|
if model_info is not None:
|
|
return model_info.is_pooling
|
|
return False
|
|
|
|
|
|
class ModelForCasualLM(nn.Layer, ABC):
|
|
"""
|
|
Base class for LM
|
|
"""
|
|
|
|
def __init__(self, configs):
|
|
"""
|
|
Args:
|
|
configs (dict): Configurations including parameters such as max_dec_len, min_dec_len, decode_strategy,
|
|
vocab_size, use_topp_sampling, etc.
|
|
"""
|
|
super(ModelForCasualLM, self).__init__()
|
|
self.fd_config = configs
|
|
|
|
@abstractmethod
|
|
def set_state_dict(self, state_dict: Dict[str, Union[np.ndarray, paddle.Tensor]]):
|
|
"""
|
|
Load model parameters from a given state dictionary.
|
|
Args:
|
|
state_dict (dict[str, np.ndarray | paddle.Tensor]):
|
|
A dictionary containing model parameters, where keys are parameter names
|
|
and values are NumPy arrays or PaddlePaddle tensors.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
@abstractmethod
|
|
def forward(
|
|
self,
|
|
input_ids=None,
|
|
pos_emb=None,
|
|
**model_kwargs,
|
|
):
|
|
"""
|
|
Defines the forward pass of the model for generating text.
|
|
Args:
|
|
input_ids (Tensor, optional): The input token ids to the model.
|
|
pos_emb (Tensor, optional): position Embeddings for model.
|
|
**model_kwargs: Additional keyword arguments for the model.
|
|
Returns:
|
|
Tensor or list of Tensors: Generated tokens or decoded outputs.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
@abstractmethod
|
|
def compute_logits(self, hidden_state, **logits_prosessor_kwargs):
|
|
raise NotImplementedError
|
|
|
|
@classmethod
|
|
@abstractmethod
|
|
def name(self):
|
|
raise NotImplementedError
|