mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-27 21:02:24 +08:00

* collect-env subcommand * trigger ci --------- Co-authored-by: K11OntheBoat <your_email@example.com>
784 lines
26 KiB
Python
784 lines
26 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License"
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
# This file is modified from https://github.com/vllm-project/vllm/collect_env.py
|
|
|
|
import datetime
|
|
import locale
|
|
import os
|
|
import subprocess
|
|
import sys
|
|
|
|
# Unlike the rest of the PyTorch this file must be python2 compliant.
|
|
# This script outputs relevant system environment info
|
|
# Run it with `python collect_env.py` or `python -m torch.utils.collect_env`
|
|
from collections import namedtuple
|
|
|
|
import regex as re
|
|
|
|
from fastdeploy.envs import environment_variables
|
|
|
|
try:
|
|
import torch
|
|
|
|
TORCH_AVAILABLE = True
|
|
except (ImportError, NameError, AttributeError, OSError):
|
|
TORCH_AVAILABLE = False
|
|
|
|
try:
|
|
import paddle
|
|
|
|
PADDLE_AVAILABLE = True
|
|
except (ImportError, NameError, AttributeError, OSError):
|
|
PADDLE_AVAILABLE = False
|
|
|
|
# System Environment Information
|
|
SystemEnv = namedtuple(
|
|
"SystemEnv",
|
|
[
|
|
"torch_version",
|
|
"is_debug_build",
|
|
"cuda_compiled_version",
|
|
"paddle_version",
|
|
"cuda_compiled_version_paddle",
|
|
"gcc_version",
|
|
"clang_version",
|
|
"cmake_version",
|
|
"os",
|
|
"libc_version",
|
|
"python_version",
|
|
"python_platform",
|
|
"is_cuda_available",
|
|
"cuda_runtime_version",
|
|
"cuda_module_loading",
|
|
"nvidia_driver_version",
|
|
"nvidia_gpu_models",
|
|
"cudnn_version",
|
|
"pip_version", # 'pip' or 'pip3'
|
|
"pip_packages",
|
|
"conda_packages",
|
|
"is_xnnpack_available",
|
|
"cpu_info",
|
|
"fastdeploy_version", # fastdploy specific field
|
|
"fastdeploy_build_flags", # fastdploy specific field
|
|
"gpu_topo", # fastdploy specific field
|
|
"env_vars",
|
|
],
|
|
)
|
|
|
|
DEFAULT_CONDA_PATTERNS = {
|
|
"torch",
|
|
"numpy",
|
|
"cudatoolkit",
|
|
"soumith",
|
|
"mkl",
|
|
"magma",
|
|
"triton",
|
|
"optree",
|
|
"nccl",
|
|
"transformers",
|
|
"zmq",
|
|
"nvidia",
|
|
"pynvml",
|
|
}
|
|
|
|
DEFAULT_PIP_PATTERNS = {
|
|
"torch",
|
|
"numpy",
|
|
"mypy",
|
|
"flake8",
|
|
"triton",
|
|
"optree",
|
|
"onnx",
|
|
"nccl",
|
|
"transformers",
|
|
"zmq",
|
|
"nvidia",
|
|
"pynvml",
|
|
}
|
|
|
|
|
|
def run(command):
|
|
"""Return (return-code, stdout, stderr)."""
|
|
shell = True if type(command) is str else False
|
|
try:
|
|
p = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=shell)
|
|
raw_output, raw_err = p.communicate()
|
|
rc = p.returncode
|
|
if get_platform() == "win32":
|
|
enc = "oem"
|
|
else:
|
|
enc = locale.getpreferredencoding()
|
|
output = raw_output.decode(enc)
|
|
if command == "nvidia-smi topo -m":
|
|
# don't remove the leading whitespace of `nvidia-smi topo -m`
|
|
# because they are meaningful
|
|
output = output.rstrip()
|
|
else:
|
|
output = output.strip()
|
|
err = raw_err.decode(enc)
|
|
return rc, output, err.strip()
|
|
|
|
except FileNotFoundError:
|
|
cmd_str = command if isinstance(command, str) else command[0]
|
|
return 127, "", f"Command not found: {cmd_str}"
|
|
|
|
|
|
def run_and_read_all(run_lambda, command):
|
|
"""Run command using run_lambda; reads and returns entire output if rc is 0."""
|
|
rc, out, _ = run_lambda(command)
|
|
if rc != 0:
|
|
return None
|
|
return out
|
|
|
|
|
|
def run_and_parse_first_match(run_lambda, command, regex):
|
|
"""Run command using run_lambda, returns the first regex match if it exists."""
|
|
rc, out, _ = run_lambda(command)
|
|
if rc != 0:
|
|
return None
|
|
match = re.search(regex, out)
|
|
if match is None:
|
|
return None
|
|
return match.group(1)
|
|
|
|
|
|
def run_and_return_first_line(run_lambda, command):
|
|
"""Run command using run_lambda and returns first line if output is not empty."""
|
|
rc, out, _ = run_lambda(command)
|
|
if rc != 0:
|
|
return None
|
|
return out.split("\n")[0]
|
|
|
|
|
|
def get_conda_packages(run_lambda, patterns=None):
|
|
if patterns is None:
|
|
patterns = DEFAULT_CONDA_PATTERNS
|
|
conda = os.environ.get("CONDA_EXE", "conda")
|
|
out = run_and_read_all(run_lambda, [conda, "list"])
|
|
if out is None:
|
|
return out
|
|
|
|
return "\n".join(
|
|
line for line in out.splitlines() if not line.startswith("#") and any(name in line for name in patterns)
|
|
)
|
|
|
|
|
|
def get_gcc_version(run_lambda):
|
|
return run_and_parse_first_match(run_lambda, "gcc --version", r"gcc (.*)")
|
|
|
|
|
|
def get_clang_version(run_lambda):
|
|
return run_and_parse_first_match(run_lambda, "clang --version", r"clang version (.*)")
|
|
|
|
|
|
def get_cmake_version(run_lambda):
|
|
return run_and_parse_first_match(run_lambda, "cmake --version", r"cmake (.*)")
|
|
|
|
|
|
def get_nvidia_driver_version(run_lambda):
|
|
if get_platform() == "darwin":
|
|
cmd = "kextstat | grep -i cuda"
|
|
return run_and_parse_first_match(run_lambda, cmd, r"com[.]nvidia[.]CUDA [(](.*?)[)]")
|
|
smi = get_nvidia_smi()
|
|
return run_and_parse_first_match(run_lambda, smi, r"Driver Version: (.*?) ")
|
|
|
|
|
|
def get_gpu_info(run_lambda):
|
|
if get_platform() == "darwin":
|
|
if TORCH_AVAILABLE and torch.cuda.is_available():
|
|
gcnArch = ""
|
|
return torch.cuda.get_device_name(None) + gcnArch
|
|
return None
|
|
smi = get_nvidia_smi()
|
|
uuid_regex = re.compile(r" \(UUID: .+?\)")
|
|
rc, out, _ = run_lambda(smi + " -L")
|
|
if rc != 0:
|
|
return None
|
|
# Anonymize GPUs by removing their UUID
|
|
return re.sub(uuid_regex, "", out)
|
|
|
|
|
|
def get_running_cuda_version(run_lambda):
|
|
return run_and_parse_first_match(run_lambda, "nvcc --version", r"release .+ V(.*)")
|
|
|
|
|
|
def get_cudnn_version(run_lambda):
|
|
"""Return a list of libcudnn.so; it's hard to tell which one is being used."""
|
|
if get_platform() == "win32":
|
|
system_root = os.environ.get("SYSTEMROOT", "C:\\Windows")
|
|
cuda_path = os.environ.get("CUDA_PATH", "%CUDA_PATH%")
|
|
where_cmd = os.path.join(system_root, "System32", "where")
|
|
cudnn_cmd = '{} /R "{}\\bin" cudnn*.dll'.format(where_cmd, cuda_path)
|
|
elif get_platform() == "darwin":
|
|
# CUDA libraries and drivers can be found in /usr/local/cuda/. See
|
|
# https://docs.nvidia.com/cuda/cuda-installation-guide-mac-os-x/index.html#install
|
|
# https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#installmac
|
|
# Use CUDNN_LIBRARY when cudnn library is installed elsewhere.
|
|
cudnn_cmd = "ls /usr/local/cuda/lib/libcudnn*"
|
|
else:
|
|
cudnn_cmd = 'ldconfig -p | grep libcudnn | rev | cut -d" " -f1 | rev'
|
|
rc, out, _ = run_lambda(cudnn_cmd)
|
|
# find will return 1 if there are permission errors or if not found
|
|
if len(out) == 0 or (rc != 1 and rc != 0):
|
|
l = os.environ.get("CUDNN_LIBRARY")
|
|
if l is not None and os.path.isfile(l):
|
|
return os.path.realpath(l)
|
|
return None
|
|
files_set = set()
|
|
for fn in out.split("\n"):
|
|
fn = os.path.realpath(fn) # eliminate symbolic links
|
|
if os.path.isfile(fn):
|
|
files_set.add(fn)
|
|
if not files_set:
|
|
return None
|
|
# Alphabetize the result because the order is non-deterministic otherwise
|
|
files = sorted(files_set)
|
|
if len(files) == 1:
|
|
return files[0]
|
|
result = "\n".join(files)
|
|
return "Probably one of the following:\n{}".format(result)
|
|
|
|
|
|
def get_nvidia_smi():
|
|
# Note: nvidia-smi is currently available only on Windows and Linux
|
|
smi = "nvidia-smi"
|
|
if get_platform() == "win32":
|
|
system_root = os.environ.get("SYSTEMROOT", "C:\\Windows")
|
|
program_files_root = os.environ.get("PROGRAMFILES", "C:\\Program Files")
|
|
legacy_path = os.path.join(program_files_root, "NVIDIA Corporation", "NVSMI", smi)
|
|
new_path = os.path.join(system_root, "System32", smi)
|
|
smis = [new_path, legacy_path]
|
|
for candidate_smi in smis:
|
|
if os.path.exists(candidate_smi):
|
|
smi = '"{}"'.format(candidate_smi)
|
|
break
|
|
return smi
|
|
|
|
|
|
def get_fastdeploy_version():
|
|
import pkg_resources
|
|
|
|
version = os.environ.get("FASTDEPLOY_VERSION")
|
|
if version:
|
|
return version
|
|
|
|
try:
|
|
return pkg_resources.get_distribution("fastdeploy").version
|
|
except:
|
|
pass
|
|
|
|
try:
|
|
result = subprocess.run(["pip", "show", "fastdeploy"], capture_output=True, text=True)
|
|
if result.returncode == 0:
|
|
for line in result.stdout.split("\n"):
|
|
if line.startswith("Version:"):
|
|
return line.split(":")[1].strip()
|
|
except:
|
|
pass
|
|
|
|
return "unknown (could not determine version)"
|
|
|
|
|
|
def summarize_fastdeploy_build_flags():
|
|
# This could be a static method if the flags are constant, or dynamic if you need to check environment variables, etc.
|
|
return "CUDA Archs: {};".format(os.getenv("FD_BUILDING_ARCS", "[]"))
|
|
|
|
|
|
def get_gpu_topo(run_lambda):
|
|
output = None
|
|
|
|
if get_platform() == "linux":
|
|
output = run_and_read_all(run_lambda, "nvidia-smi topo -m")
|
|
if output is None:
|
|
output = run_and_read_all(run_lambda, "rocm-smi --showtopo")
|
|
|
|
return output
|
|
|
|
|
|
# example outputs of CPU infos
|
|
# * linux
|
|
# Architecture: x86_64
|
|
# CPU op-mode(s): 32-bit, 64-bit
|
|
# Address sizes: 46 bits physical, 48 bits virtual
|
|
# Byte Order: Little Endian
|
|
# CPU(s): 128
|
|
# On-line CPU(s) list: 0-127
|
|
# Vendor ID: GenuineIntel
|
|
# Model name: Intel(R) Xeon(R) Platinum 8375C CPU @ 2.90GHz
|
|
# CPU family: 6
|
|
# Model: 106
|
|
# Thread(s) per core: 2
|
|
# Core(s) per socket: 32
|
|
# Socket(s): 2
|
|
# Stepping: 6
|
|
# BogoMIPS: 5799.78
|
|
# Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr
|
|
# sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon rep_good nopl
|
|
# xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq monitor ssse3 fma cx16
|
|
# pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand
|
|
# hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced
|
|
# fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap
|
|
# avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1
|
|
# xsaves wbnoinvd ida arat avx512vbmi pku ospke avx512_vbmi2 gfni vaes vpclmulqdq
|
|
# avx512_vnni avx512_bitalg tme avx512_vpopcntdq rdpid md_clear flush_l1d arch_capabilities
|
|
# Virtualization features:
|
|
# Hypervisor vendor: KVM
|
|
# Virtualization type: full
|
|
# Caches (sum of all):
|
|
# L1d: 3 MiB (64 instances)
|
|
# L1i: 2 MiB (64 instances)
|
|
# L2: 80 MiB (64 instances)
|
|
# L3: 108 MiB (2 instances)
|
|
# NUMA:
|
|
# NUMA node(s): 2
|
|
# NUMA node0 CPU(s): 0-31,64-95
|
|
# NUMA node1 CPU(s): 32-63,96-127
|
|
# Vulnerabilities:
|
|
# Itlb multihit: Not affected
|
|
# L1tf: Not affected
|
|
# Mds: Not affected
|
|
# Meltdown: Not affected
|
|
# Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
|
|
# Retbleed: Not affected
|
|
# Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
|
|
# Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
|
|
# Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence
|
|
# Srbds: Not affected
|
|
# Tsx async abort: Not affected
|
|
# * win32
|
|
# Architecture=9
|
|
# CurrentClockSpeed=2900
|
|
# DeviceID=CPU0
|
|
# Family=179
|
|
# L2CacheSize=40960
|
|
# L2CacheSpeed=
|
|
# Manufacturer=GenuineIntel
|
|
# MaxClockSpeed=2900
|
|
# Name=Intel(R) Xeon(R) Platinum 8375C CPU @ 2.90GHz
|
|
# ProcessorType=3
|
|
# Revision=27142
|
|
#
|
|
# Architecture=9
|
|
# CurrentClockSpeed=2900
|
|
# DeviceID=CPU1
|
|
# Family=179
|
|
# L2CacheSize=40960
|
|
# L2CacheSpeed=
|
|
# Manufacturer=GenuineIntel
|
|
# MaxClockSpeed=2900
|
|
# Name=Intel(R) Xeon(R) Platinum 8375C CPU @ 2.90GHz
|
|
# ProcessorType=3
|
|
# Revision=27142
|
|
|
|
|
|
def get_cpu_info(run_lambda):
|
|
rc, out, err = 0, "", ""
|
|
if get_platform() == "linux":
|
|
rc, out, err = run_lambda("lscpu")
|
|
elif get_platform() == "win32":
|
|
rc, out, err = run_lambda(
|
|
"wmic cpu get Name,Manufacturer,Family,Architecture,ProcessorType,DeviceID, \
|
|
CurrentClockSpeed,MaxClockSpeed,L2CacheSize,L2CacheSpeed,Revision /VALUE"
|
|
)
|
|
elif get_platform() == "darwin":
|
|
rc, out, err = run_lambda("sysctl -n machdep.cpu.brand_string")
|
|
cpu_info = "None"
|
|
if rc == 0:
|
|
cpu_info = out
|
|
else:
|
|
cpu_info = err
|
|
return cpu_info
|
|
|
|
|
|
def get_platform():
|
|
if sys.platform.startswith("linux"):
|
|
return "linux"
|
|
elif sys.platform.startswith("win32"):
|
|
return "win32"
|
|
elif sys.platform.startswith("cygwin"):
|
|
return "cygwin"
|
|
elif sys.platform.startswith("darwin"):
|
|
return "darwin"
|
|
else:
|
|
return sys.platform
|
|
|
|
|
|
def get_mac_version(run_lambda):
|
|
return run_and_parse_first_match(run_lambda, "sw_vers -productVersion", r"(.*)")
|
|
|
|
|
|
def get_windows_version(run_lambda):
|
|
system_root = os.environ.get("SYSTEMROOT", "C:\\Windows")
|
|
wmic_cmd = os.path.join(system_root, "System32", "Wbem", "wmic")
|
|
findstr_cmd = os.path.join(system_root, "System32", "findstr")
|
|
return run_and_read_all(run_lambda, "{} os get Caption | {} /v Caption".format(wmic_cmd, findstr_cmd))
|
|
|
|
|
|
def get_lsb_version(run_lambda):
|
|
return run_and_parse_first_match(run_lambda, "lsb_release -a", r"Description:\t(.*)")
|
|
|
|
|
|
def check_release_file(run_lambda):
|
|
return run_and_parse_first_match(run_lambda, "cat /etc/*-release", r'PRETTY_NAME="(.*)"')
|
|
|
|
|
|
def get_os(run_lambda):
|
|
from platform import machine
|
|
|
|
platform = get_platform()
|
|
|
|
if platform == "win32" or platform == "cygwin":
|
|
return get_windows_version(run_lambda)
|
|
|
|
if platform == "darwin":
|
|
version = get_mac_version(run_lambda)
|
|
if version is None:
|
|
return None
|
|
return "macOS {} ({})".format(version, machine())
|
|
|
|
if platform == "linux":
|
|
# Ubuntu/Debian based
|
|
desc = get_lsb_version(run_lambda)
|
|
if desc is not None:
|
|
return "{} ({})".format(desc, machine())
|
|
|
|
# Try reading /etc/*-release
|
|
desc = check_release_file(run_lambda)
|
|
if desc is not None:
|
|
return "{} ({})".format(desc, machine())
|
|
|
|
return "{} ({})".format(platform, machine())
|
|
|
|
# Unknown platform
|
|
return platform
|
|
|
|
|
|
def get_python_platform():
|
|
import platform
|
|
|
|
return platform.platform()
|
|
|
|
|
|
def get_libc_version():
|
|
import platform
|
|
|
|
if get_platform() != "linux":
|
|
return "N/A"
|
|
return "-".join(platform.libc_ver())
|
|
|
|
|
|
def get_pip_packages(run_lambda, patterns=None):
|
|
"""Return `pip list` output. Note: will also find conda-installed pytorch and numpy packages."""
|
|
if patterns is None:
|
|
patterns = DEFAULT_PIP_PATTERNS
|
|
|
|
def run_with_pip():
|
|
try:
|
|
import importlib.util
|
|
|
|
pip_spec = importlib.util.find_spec("pip")
|
|
pip_available = pip_spec is not None
|
|
except ImportError:
|
|
pip_available = False
|
|
|
|
if pip_available:
|
|
cmd = [sys.executable, "-mpip", "list", "--format=freeze"]
|
|
elif os.environ.get("UV") is not None:
|
|
print("uv is set")
|
|
cmd = ["uv", "pip", "list", "--format=freeze"]
|
|
else:
|
|
raise RuntimeError("Could not collect pip list output (pip or uv module not available)")
|
|
|
|
out = run_and_read_all(run_lambda, cmd)
|
|
return "\n".join(line for line in out.splitlines() if any(name in line for name in patterns))
|
|
|
|
pip_version = "pip3" if sys.version[0] == "3" else "pip"
|
|
out = run_with_pip()
|
|
return pip_version, out
|
|
|
|
|
|
def get_cuda_module_loading_config():
|
|
if TORCH_AVAILABLE and torch.cuda.is_available():
|
|
torch.cuda.init()
|
|
config = os.environ.get("CUDA_MODULE_LOADING", "")
|
|
return config
|
|
else:
|
|
return "N/A"
|
|
|
|
|
|
def is_xnnpack_available():
|
|
if TORCH_AVAILABLE:
|
|
try:
|
|
import torch.backends.xnnpack
|
|
|
|
return str(torch.backends.xnnpack.enabled) # type: ignore[attr-defined]
|
|
except:
|
|
return "N/A"
|
|
else:
|
|
return "N/A"
|
|
|
|
|
|
def get_env_vars():
|
|
env_vars = ""
|
|
secret_terms = ("secret", "token", "api", "access", "password")
|
|
report_prefix = ("TORCH", "NCCL", "PYTORCH", "CUDA", "CUBLAS", "CUDNN", "OMP_", "MKL_", "NVIDIA")
|
|
for k, v in os.environ.items():
|
|
if any(term in k.lower() for term in secret_terms):
|
|
continue
|
|
if k in environment_variables:
|
|
env_vars = env_vars + "{}={}".format(k, v) + "\n"
|
|
if k.startswith(report_prefix):
|
|
env_vars = env_vars + "{}={}".format(k, v) + "\n"
|
|
|
|
return env_vars
|
|
|
|
|
|
def get_env_info():
|
|
run_lambda = run
|
|
pip_version, pip_list_output = get_pip_packages(run_lambda)
|
|
|
|
if TORCH_AVAILABLE:
|
|
version_str = torch.__version__
|
|
debug_mode_str = str(torch.version.debug)
|
|
torch_cuda_available_str = str(torch.cuda.is_available())
|
|
cuda_version_str = torch.version.cuda
|
|
else:
|
|
version_str = debug_mode_str = torch_cuda_available_str = cuda_version_str = "N/A"
|
|
|
|
if PADDLE_AVAILABLE:
|
|
paddle_version_str = paddle.__version__
|
|
paddle_cuda_available_str = str(torch.cuda.is_available())
|
|
paddle_cuda_version_str = str(paddle.version.cuda())
|
|
else:
|
|
version_str = paddle_cuda_available_str = cuda_version_str = "N/A"
|
|
|
|
if torch_cuda_available_str == "True" or paddle_cuda_available_str == "True":
|
|
cuda_available_str = "True"
|
|
else:
|
|
cuda_available_str = "False"
|
|
|
|
sys_version = sys.version.replace("\n", " ")
|
|
|
|
conda_packages = get_conda_packages(run_lambda)
|
|
|
|
fastdeploy_version = get_fastdeploy_version()
|
|
fastdeploy_build_flags = summarize_fastdeploy_build_flags()
|
|
gpu_topo = get_gpu_topo(run_lambda)
|
|
|
|
return SystemEnv(
|
|
torch_version=version_str,
|
|
is_debug_build=debug_mode_str,
|
|
paddle_version=paddle_version_str,
|
|
cuda_compiled_version_paddle=paddle_cuda_version_str,
|
|
python_version="{} ({}-bit runtime)".format(sys_version, sys.maxsize.bit_length() + 1),
|
|
python_platform=get_python_platform(),
|
|
is_cuda_available=cuda_available_str,
|
|
cuda_compiled_version=cuda_version_str,
|
|
cuda_runtime_version=get_running_cuda_version(run_lambda),
|
|
cuda_module_loading=get_cuda_module_loading_config(),
|
|
nvidia_gpu_models=get_gpu_info(run_lambda),
|
|
nvidia_driver_version=get_nvidia_driver_version(run_lambda),
|
|
cudnn_version=get_cudnn_version(run_lambda),
|
|
pip_version=pip_version,
|
|
pip_packages=pip_list_output,
|
|
conda_packages=conda_packages,
|
|
os=get_os(run_lambda),
|
|
libc_version=get_libc_version(),
|
|
gcc_version=get_gcc_version(run_lambda),
|
|
clang_version=get_clang_version(run_lambda),
|
|
cmake_version=get_cmake_version(run_lambda),
|
|
is_xnnpack_available=is_xnnpack_available(),
|
|
cpu_info=get_cpu_info(run_lambda),
|
|
fastdeploy_version=fastdeploy_version,
|
|
fastdeploy_build_flags=fastdeploy_build_flags,
|
|
gpu_topo=gpu_topo,
|
|
env_vars=get_env_vars(),
|
|
)
|
|
|
|
|
|
env_info_fmt = """
|
|
==============================
|
|
System Info
|
|
==============================
|
|
OS : {os}
|
|
GCC version : {gcc_version}
|
|
Clang version : {clang_version}
|
|
CMake version : {cmake_version}
|
|
Libc version : {libc_version}
|
|
|
|
==============================
|
|
PyTorch Info
|
|
==============================
|
|
PyTorch version : {torch_version}
|
|
Is debug build : {is_debug_build}
|
|
CUDA used to build PyTorch : {cuda_compiled_version}
|
|
|
|
==============================
|
|
Paddle Info
|
|
==============================
|
|
Paddle version : {paddle_version}
|
|
CUDA used to build paddle : {cuda_compiled_version_paddle}
|
|
|
|
==============================
|
|
Python Environment
|
|
==============================
|
|
Python version : {python_version}
|
|
Python platform : {python_platform}
|
|
|
|
==============================
|
|
CUDA / GPU Info
|
|
==============================
|
|
Is CUDA available : {is_cuda_available}
|
|
CUDA runtime version : {cuda_runtime_version}
|
|
CUDA_MODULE_LOADING set to : {cuda_module_loading}
|
|
GPU models and configuration : {nvidia_gpu_models}
|
|
Nvidia driver version : {nvidia_driver_version}
|
|
cuDNN version : {cudnn_version}
|
|
Is XNNPACK available : {is_xnnpack_available}
|
|
|
|
==============================
|
|
CPU Info
|
|
==============================
|
|
{cpu_info}
|
|
|
|
==============================
|
|
Versions of relevant libraries
|
|
==============================
|
|
{pip_packages}
|
|
{conda_packages}
|
|
""".strip()
|
|
|
|
# both the above code and the following code use `strip()` to
|
|
# remove leading/trailing whitespaces, so we need to add a newline
|
|
# in between to separate the two sections
|
|
env_info_fmt += "\n\n"
|
|
|
|
env_info_fmt += """
|
|
==============================
|
|
FastDeploy Info
|
|
==============================
|
|
FastDeply Version : {fastdeploy_version}
|
|
FastDeply Build Flags:
|
|
{fastdeploy_build_flags}
|
|
GPU Topology:
|
|
{gpu_topo}
|
|
|
|
==============================
|
|
Environment Variables
|
|
==============================
|
|
{env_vars}
|
|
""".strip()
|
|
|
|
|
|
def pretty_str(envinfo):
|
|
|
|
def replace_nones(dct, replacement="Could not collect"):
|
|
for key in dct.keys():
|
|
if dct[key] is not None:
|
|
continue
|
|
dct[key] = replacement
|
|
return dct
|
|
|
|
def replace_bools(dct, true="Yes", false="No"):
|
|
for key in dct.keys():
|
|
if dct[key] is True:
|
|
dct[key] = true
|
|
elif dct[key] is False:
|
|
dct[key] = false
|
|
return dct
|
|
|
|
def prepend(text, tag="[prepend]"):
|
|
lines = text.split("\n")
|
|
updated_lines = [tag + line for line in lines]
|
|
return "\n".join(updated_lines)
|
|
|
|
def replace_if_empty(text, replacement="No relevant packages"):
|
|
if text is not None and len(text) == 0:
|
|
return replacement
|
|
return text
|
|
|
|
def maybe_start_on_next_line(string):
|
|
# If `string` is multiline, prepend a \n to it.
|
|
if string is not None and len(string.split("\n")) > 1:
|
|
return "\n{}\n".format(string)
|
|
return string
|
|
|
|
mutable_dict = envinfo._asdict()
|
|
|
|
# If nvidia_gpu_models is multiline, start on the next line
|
|
mutable_dict["nvidia_gpu_models"] = maybe_start_on_next_line(envinfo.nvidia_gpu_models)
|
|
|
|
# If the machine doesn't have CUDA, report some fields as 'No CUDA'
|
|
dynamic_cuda_fields = [
|
|
"cuda_runtime_version",
|
|
"nvidia_gpu_models",
|
|
"nvidia_driver_version",
|
|
]
|
|
all_cuda_fields = dynamic_cuda_fields + ["cudnn_version"]
|
|
all_dynamic_cuda_fields_missing = all(mutable_dict[field] is None for field in dynamic_cuda_fields)
|
|
if TORCH_AVAILABLE and not torch.cuda.is_available() and all_dynamic_cuda_fields_missing:
|
|
for field in all_cuda_fields:
|
|
mutable_dict[field] = "No CUDA"
|
|
if envinfo.cuda_compiled_version is None:
|
|
mutable_dict["cuda_compiled_version"] = "None"
|
|
|
|
# Replace True with Yes, False with No
|
|
mutable_dict = replace_bools(mutable_dict)
|
|
|
|
# Replace all None objects with 'Could not collect'
|
|
mutable_dict = replace_nones(mutable_dict)
|
|
|
|
# If either of these are '', replace with 'No relevant packages'
|
|
mutable_dict["pip_packages"] = replace_if_empty(mutable_dict["pip_packages"])
|
|
mutable_dict["conda_packages"] = replace_if_empty(mutable_dict["conda_packages"])
|
|
|
|
# Tag conda and pip packages with a prefix
|
|
# If they were previously None, they'll show up as ie '[conda] Could not collect'
|
|
if mutable_dict["pip_packages"]:
|
|
mutable_dict["pip_packages"] = prepend(mutable_dict["pip_packages"], "[{}] ".format(envinfo.pip_version))
|
|
if mutable_dict["conda_packages"]:
|
|
mutable_dict["conda_packages"] = prepend(mutable_dict["conda_packages"], "[conda] ")
|
|
mutable_dict["cpu_info"] = envinfo.cpu_info
|
|
return env_info_fmt.format(**mutable_dict)
|
|
|
|
|
|
def get_pretty_env_info():
|
|
return pretty_str(get_env_info())
|
|
|
|
|
|
def main():
|
|
print("Collecting environment information...")
|
|
output = get_pretty_env_info()
|
|
print(output)
|
|
|
|
if TORCH_AVAILABLE and hasattr(torch, "utils") and hasattr(torch.utils, "_crash_handler"):
|
|
minidump_dir = torch.utils._crash_handler.DEFAULT_MINIDUMP_DIR
|
|
if sys.platform == "linux" and os.path.exists(minidump_dir):
|
|
dumps = [os.path.join(minidump_dir, dump) for dump in os.listdir(minidump_dir)]
|
|
latest = max(dumps, key=os.path.getctime)
|
|
ctime = os.path.getctime(latest)
|
|
creation_time = datetime.datetime.fromtimestamp(ctime).strftime("%Y-%m-%d %H:%M:%S")
|
|
msg = (
|
|
"\n*** Detected a minidump at {} created on {}, ".format(latest, creation_time)
|
|
+ "if this is related to your bug please include it when you file a report ***"
|
|
)
|
|
print(msg, file=sys.stderr)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|