Files
FastDeploy/fastdeploy/collect_env.py
qwes5s5 553adb299e 【FastDeploy CLI】collect-env subcommand (#4044)
* collect-env subcommand

* trigger ci

---------

Co-authored-by: K11OntheBoat <your_email@example.com>
2025-09-15 10:31:23 +08:00

784 lines
26 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
# This file is modified from https://github.com/vllm-project/vllm/collect_env.py
import datetime
import locale
import os
import subprocess
import sys
# Unlike the rest of the PyTorch this file must be python2 compliant.
# This script outputs relevant system environment info
# Run it with `python collect_env.py` or `python -m torch.utils.collect_env`
from collections import namedtuple
import regex as re
from fastdeploy.envs import environment_variables
try:
import torch
TORCH_AVAILABLE = True
except (ImportError, NameError, AttributeError, OSError):
TORCH_AVAILABLE = False
try:
import paddle
PADDLE_AVAILABLE = True
except (ImportError, NameError, AttributeError, OSError):
PADDLE_AVAILABLE = False
# System Environment Information
SystemEnv = namedtuple(
"SystemEnv",
[
"torch_version",
"is_debug_build",
"cuda_compiled_version",
"paddle_version",
"cuda_compiled_version_paddle",
"gcc_version",
"clang_version",
"cmake_version",
"os",
"libc_version",
"python_version",
"python_platform",
"is_cuda_available",
"cuda_runtime_version",
"cuda_module_loading",
"nvidia_driver_version",
"nvidia_gpu_models",
"cudnn_version",
"pip_version", # 'pip' or 'pip3'
"pip_packages",
"conda_packages",
"is_xnnpack_available",
"cpu_info",
"fastdeploy_version", # fastdploy specific field
"fastdeploy_build_flags", # fastdploy specific field
"gpu_topo", # fastdploy specific field
"env_vars",
],
)
DEFAULT_CONDA_PATTERNS = {
"torch",
"numpy",
"cudatoolkit",
"soumith",
"mkl",
"magma",
"triton",
"optree",
"nccl",
"transformers",
"zmq",
"nvidia",
"pynvml",
}
DEFAULT_PIP_PATTERNS = {
"torch",
"numpy",
"mypy",
"flake8",
"triton",
"optree",
"onnx",
"nccl",
"transformers",
"zmq",
"nvidia",
"pynvml",
}
def run(command):
"""Return (return-code, stdout, stderr)."""
shell = True if type(command) is str else False
try:
p = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=shell)
raw_output, raw_err = p.communicate()
rc = p.returncode
if get_platform() == "win32":
enc = "oem"
else:
enc = locale.getpreferredencoding()
output = raw_output.decode(enc)
if command == "nvidia-smi topo -m":
# don't remove the leading whitespace of `nvidia-smi topo -m`
# because they are meaningful
output = output.rstrip()
else:
output = output.strip()
err = raw_err.decode(enc)
return rc, output, err.strip()
except FileNotFoundError:
cmd_str = command if isinstance(command, str) else command[0]
return 127, "", f"Command not found: {cmd_str}"
def run_and_read_all(run_lambda, command):
"""Run command using run_lambda; reads and returns entire output if rc is 0."""
rc, out, _ = run_lambda(command)
if rc != 0:
return None
return out
def run_and_parse_first_match(run_lambda, command, regex):
"""Run command using run_lambda, returns the first regex match if it exists."""
rc, out, _ = run_lambda(command)
if rc != 0:
return None
match = re.search(regex, out)
if match is None:
return None
return match.group(1)
def run_and_return_first_line(run_lambda, command):
"""Run command using run_lambda and returns first line if output is not empty."""
rc, out, _ = run_lambda(command)
if rc != 0:
return None
return out.split("\n")[0]
def get_conda_packages(run_lambda, patterns=None):
if patterns is None:
patterns = DEFAULT_CONDA_PATTERNS
conda = os.environ.get("CONDA_EXE", "conda")
out = run_and_read_all(run_lambda, [conda, "list"])
if out is None:
return out
return "\n".join(
line for line in out.splitlines() if not line.startswith("#") and any(name in line for name in patterns)
)
def get_gcc_version(run_lambda):
return run_and_parse_first_match(run_lambda, "gcc --version", r"gcc (.*)")
def get_clang_version(run_lambda):
return run_and_parse_first_match(run_lambda, "clang --version", r"clang version (.*)")
def get_cmake_version(run_lambda):
return run_and_parse_first_match(run_lambda, "cmake --version", r"cmake (.*)")
def get_nvidia_driver_version(run_lambda):
if get_platform() == "darwin":
cmd = "kextstat | grep -i cuda"
return run_and_parse_first_match(run_lambda, cmd, r"com[.]nvidia[.]CUDA [(](.*?)[)]")
smi = get_nvidia_smi()
return run_and_parse_first_match(run_lambda, smi, r"Driver Version: (.*?) ")
def get_gpu_info(run_lambda):
if get_platform() == "darwin":
if TORCH_AVAILABLE and torch.cuda.is_available():
gcnArch = ""
return torch.cuda.get_device_name(None) + gcnArch
return None
smi = get_nvidia_smi()
uuid_regex = re.compile(r" \(UUID: .+?\)")
rc, out, _ = run_lambda(smi + " -L")
if rc != 0:
return None
# Anonymize GPUs by removing their UUID
return re.sub(uuid_regex, "", out)
def get_running_cuda_version(run_lambda):
return run_and_parse_first_match(run_lambda, "nvcc --version", r"release .+ V(.*)")
def get_cudnn_version(run_lambda):
"""Return a list of libcudnn.so; it's hard to tell which one is being used."""
if get_platform() == "win32":
system_root = os.environ.get("SYSTEMROOT", "C:\\Windows")
cuda_path = os.environ.get("CUDA_PATH", "%CUDA_PATH%")
where_cmd = os.path.join(system_root, "System32", "where")
cudnn_cmd = '{} /R "{}\\bin" cudnn*.dll'.format(where_cmd, cuda_path)
elif get_platform() == "darwin":
# CUDA libraries and drivers can be found in /usr/local/cuda/. See
# https://docs.nvidia.com/cuda/cuda-installation-guide-mac-os-x/index.html#install
# https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#installmac
# Use CUDNN_LIBRARY when cudnn library is installed elsewhere.
cudnn_cmd = "ls /usr/local/cuda/lib/libcudnn*"
else:
cudnn_cmd = 'ldconfig -p | grep libcudnn | rev | cut -d" " -f1 | rev'
rc, out, _ = run_lambda(cudnn_cmd)
# find will return 1 if there are permission errors or if not found
if len(out) == 0 or (rc != 1 and rc != 0):
l = os.environ.get("CUDNN_LIBRARY")
if l is not None and os.path.isfile(l):
return os.path.realpath(l)
return None
files_set = set()
for fn in out.split("\n"):
fn = os.path.realpath(fn) # eliminate symbolic links
if os.path.isfile(fn):
files_set.add(fn)
if not files_set:
return None
# Alphabetize the result because the order is non-deterministic otherwise
files = sorted(files_set)
if len(files) == 1:
return files[0]
result = "\n".join(files)
return "Probably one of the following:\n{}".format(result)
def get_nvidia_smi():
# Note: nvidia-smi is currently available only on Windows and Linux
smi = "nvidia-smi"
if get_platform() == "win32":
system_root = os.environ.get("SYSTEMROOT", "C:\\Windows")
program_files_root = os.environ.get("PROGRAMFILES", "C:\\Program Files")
legacy_path = os.path.join(program_files_root, "NVIDIA Corporation", "NVSMI", smi)
new_path = os.path.join(system_root, "System32", smi)
smis = [new_path, legacy_path]
for candidate_smi in smis:
if os.path.exists(candidate_smi):
smi = '"{}"'.format(candidate_smi)
break
return smi
def get_fastdeploy_version():
import pkg_resources
version = os.environ.get("FASTDEPLOY_VERSION")
if version:
return version
try:
return pkg_resources.get_distribution("fastdeploy").version
except:
pass
try:
result = subprocess.run(["pip", "show", "fastdeploy"], capture_output=True, text=True)
if result.returncode == 0:
for line in result.stdout.split("\n"):
if line.startswith("Version:"):
return line.split(":")[1].strip()
except:
pass
return "unknown (could not determine version)"
def summarize_fastdeploy_build_flags():
# This could be a static method if the flags are constant, or dynamic if you need to check environment variables, etc.
return "CUDA Archs: {};".format(os.getenv("FD_BUILDING_ARCS", "[]"))
def get_gpu_topo(run_lambda):
output = None
if get_platform() == "linux":
output = run_and_read_all(run_lambda, "nvidia-smi topo -m")
if output is None:
output = run_and_read_all(run_lambda, "rocm-smi --showtopo")
return output
# example outputs of CPU infos
# * linux
# Architecture: x86_64
# CPU op-mode(s): 32-bit, 64-bit
# Address sizes: 46 bits physical, 48 bits virtual
# Byte Order: Little Endian
# CPU(s): 128
# On-line CPU(s) list: 0-127
# Vendor ID: GenuineIntel
# Model name: Intel(R) Xeon(R) Platinum 8375C CPU @ 2.90GHz
# CPU family: 6
# Model: 106
# Thread(s) per core: 2
# Core(s) per socket: 32
# Socket(s): 2
# Stepping: 6
# BogoMIPS: 5799.78
# Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr
# sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon rep_good nopl
# xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq monitor ssse3 fma cx16
# pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand
# hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced
# fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap
# avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1
# xsaves wbnoinvd ida arat avx512vbmi pku ospke avx512_vbmi2 gfni vaes vpclmulqdq
# avx512_vnni avx512_bitalg tme avx512_vpopcntdq rdpid md_clear flush_l1d arch_capabilities
# Virtualization features:
# Hypervisor vendor: KVM
# Virtualization type: full
# Caches (sum of all):
# L1d: 3 MiB (64 instances)
# L1i: 2 MiB (64 instances)
# L2: 80 MiB (64 instances)
# L3: 108 MiB (2 instances)
# NUMA:
# NUMA node(s): 2
# NUMA node0 CPU(s): 0-31,64-95
# NUMA node1 CPU(s): 32-63,96-127
# Vulnerabilities:
# Itlb multihit: Not affected
# L1tf: Not affected
# Mds: Not affected
# Meltdown: Not affected
# Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
# Retbleed: Not affected
# Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
# Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
# Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence
# Srbds: Not affected
# Tsx async abort: Not affected
# * win32
# Architecture=9
# CurrentClockSpeed=2900
# DeviceID=CPU0
# Family=179
# L2CacheSize=40960
# L2CacheSpeed=
# Manufacturer=GenuineIntel
# MaxClockSpeed=2900
# Name=Intel(R) Xeon(R) Platinum 8375C CPU @ 2.90GHz
# ProcessorType=3
# Revision=27142
#
# Architecture=9
# CurrentClockSpeed=2900
# DeviceID=CPU1
# Family=179
# L2CacheSize=40960
# L2CacheSpeed=
# Manufacturer=GenuineIntel
# MaxClockSpeed=2900
# Name=Intel(R) Xeon(R) Platinum 8375C CPU @ 2.90GHz
# ProcessorType=3
# Revision=27142
def get_cpu_info(run_lambda):
rc, out, err = 0, "", ""
if get_platform() == "linux":
rc, out, err = run_lambda("lscpu")
elif get_platform() == "win32":
rc, out, err = run_lambda(
"wmic cpu get Name,Manufacturer,Family,Architecture,ProcessorType,DeviceID, \
CurrentClockSpeed,MaxClockSpeed,L2CacheSize,L2CacheSpeed,Revision /VALUE"
)
elif get_platform() == "darwin":
rc, out, err = run_lambda("sysctl -n machdep.cpu.brand_string")
cpu_info = "None"
if rc == 0:
cpu_info = out
else:
cpu_info = err
return cpu_info
def get_platform():
if sys.platform.startswith("linux"):
return "linux"
elif sys.platform.startswith("win32"):
return "win32"
elif sys.platform.startswith("cygwin"):
return "cygwin"
elif sys.platform.startswith("darwin"):
return "darwin"
else:
return sys.platform
def get_mac_version(run_lambda):
return run_and_parse_first_match(run_lambda, "sw_vers -productVersion", r"(.*)")
def get_windows_version(run_lambda):
system_root = os.environ.get("SYSTEMROOT", "C:\\Windows")
wmic_cmd = os.path.join(system_root, "System32", "Wbem", "wmic")
findstr_cmd = os.path.join(system_root, "System32", "findstr")
return run_and_read_all(run_lambda, "{} os get Caption | {} /v Caption".format(wmic_cmd, findstr_cmd))
def get_lsb_version(run_lambda):
return run_and_parse_first_match(run_lambda, "lsb_release -a", r"Description:\t(.*)")
def check_release_file(run_lambda):
return run_and_parse_first_match(run_lambda, "cat /etc/*-release", r'PRETTY_NAME="(.*)"')
def get_os(run_lambda):
from platform import machine
platform = get_platform()
if platform == "win32" or platform == "cygwin":
return get_windows_version(run_lambda)
if platform == "darwin":
version = get_mac_version(run_lambda)
if version is None:
return None
return "macOS {} ({})".format(version, machine())
if platform == "linux":
# Ubuntu/Debian based
desc = get_lsb_version(run_lambda)
if desc is not None:
return "{} ({})".format(desc, machine())
# Try reading /etc/*-release
desc = check_release_file(run_lambda)
if desc is not None:
return "{} ({})".format(desc, machine())
return "{} ({})".format(platform, machine())
# Unknown platform
return platform
def get_python_platform():
import platform
return platform.platform()
def get_libc_version():
import platform
if get_platform() != "linux":
return "N/A"
return "-".join(platform.libc_ver())
def get_pip_packages(run_lambda, patterns=None):
"""Return `pip list` output. Note: will also find conda-installed pytorch and numpy packages."""
if patterns is None:
patterns = DEFAULT_PIP_PATTERNS
def run_with_pip():
try:
import importlib.util
pip_spec = importlib.util.find_spec("pip")
pip_available = pip_spec is not None
except ImportError:
pip_available = False
if pip_available:
cmd = [sys.executable, "-mpip", "list", "--format=freeze"]
elif os.environ.get("UV") is not None:
print("uv is set")
cmd = ["uv", "pip", "list", "--format=freeze"]
else:
raise RuntimeError("Could not collect pip list output (pip or uv module not available)")
out = run_and_read_all(run_lambda, cmd)
return "\n".join(line for line in out.splitlines() if any(name in line for name in patterns))
pip_version = "pip3" if sys.version[0] == "3" else "pip"
out = run_with_pip()
return pip_version, out
def get_cuda_module_loading_config():
if TORCH_AVAILABLE and torch.cuda.is_available():
torch.cuda.init()
config = os.environ.get("CUDA_MODULE_LOADING", "")
return config
else:
return "N/A"
def is_xnnpack_available():
if TORCH_AVAILABLE:
try:
import torch.backends.xnnpack
return str(torch.backends.xnnpack.enabled) # type: ignore[attr-defined]
except:
return "N/A"
else:
return "N/A"
def get_env_vars():
env_vars = ""
secret_terms = ("secret", "token", "api", "access", "password")
report_prefix = ("TORCH", "NCCL", "PYTORCH", "CUDA", "CUBLAS", "CUDNN", "OMP_", "MKL_", "NVIDIA")
for k, v in os.environ.items():
if any(term in k.lower() for term in secret_terms):
continue
if k in environment_variables:
env_vars = env_vars + "{}={}".format(k, v) + "\n"
if k.startswith(report_prefix):
env_vars = env_vars + "{}={}".format(k, v) + "\n"
return env_vars
def get_env_info():
run_lambda = run
pip_version, pip_list_output = get_pip_packages(run_lambda)
if TORCH_AVAILABLE:
version_str = torch.__version__
debug_mode_str = str(torch.version.debug)
torch_cuda_available_str = str(torch.cuda.is_available())
cuda_version_str = torch.version.cuda
else:
version_str = debug_mode_str = torch_cuda_available_str = cuda_version_str = "N/A"
if PADDLE_AVAILABLE:
paddle_version_str = paddle.__version__
paddle_cuda_available_str = str(torch.cuda.is_available())
paddle_cuda_version_str = str(paddle.version.cuda())
else:
version_str = paddle_cuda_available_str = cuda_version_str = "N/A"
if torch_cuda_available_str == "True" or paddle_cuda_available_str == "True":
cuda_available_str = "True"
else:
cuda_available_str = "False"
sys_version = sys.version.replace("\n", " ")
conda_packages = get_conda_packages(run_lambda)
fastdeploy_version = get_fastdeploy_version()
fastdeploy_build_flags = summarize_fastdeploy_build_flags()
gpu_topo = get_gpu_topo(run_lambda)
return SystemEnv(
torch_version=version_str,
is_debug_build=debug_mode_str,
paddle_version=paddle_version_str,
cuda_compiled_version_paddle=paddle_cuda_version_str,
python_version="{} ({}-bit runtime)".format(sys_version, sys.maxsize.bit_length() + 1),
python_platform=get_python_platform(),
is_cuda_available=cuda_available_str,
cuda_compiled_version=cuda_version_str,
cuda_runtime_version=get_running_cuda_version(run_lambda),
cuda_module_loading=get_cuda_module_loading_config(),
nvidia_gpu_models=get_gpu_info(run_lambda),
nvidia_driver_version=get_nvidia_driver_version(run_lambda),
cudnn_version=get_cudnn_version(run_lambda),
pip_version=pip_version,
pip_packages=pip_list_output,
conda_packages=conda_packages,
os=get_os(run_lambda),
libc_version=get_libc_version(),
gcc_version=get_gcc_version(run_lambda),
clang_version=get_clang_version(run_lambda),
cmake_version=get_cmake_version(run_lambda),
is_xnnpack_available=is_xnnpack_available(),
cpu_info=get_cpu_info(run_lambda),
fastdeploy_version=fastdeploy_version,
fastdeploy_build_flags=fastdeploy_build_flags,
gpu_topo=gpu_topo,
env_vars=get_env_vars(),
)
env_info_fmt = """
==============================
System Info
==============================
OS : {os}
GCC version : {gcc_version}
Clang version : {clang_version}
CMake version : {cmake_version}
Libc version : {libc_version}
==============================
PyTorch Info
==============================
PyTorch version : {torch_version}
Is debug build : {is_debug_build}
CUDA used to build PyTorch : {cuda_compiled_version}
==============================
Paddle Info
==============================
Paddle version : {paddle_version}
CUDA used to build paddle : {cuda_compiled_version_paddle}
==============================
Python Environment
==============================
Python version : {python_version}
Python platform : {python_platform}
==============================
CUDA / GPU Info
==============================
Is CUDA available : {is_cuda_available}
CUDA runtime version : {cuda_runtime_version}
CUDA_MODULE_LOADING set to : {cuda_module_loading}
GPU models and configuration : {nvidia_gpu_models}
Nvidia driver version : {nvidia_driver_version}
cuDNN version : {cudnn_version}
Is XNNPACK available : {is_xnnpack_available}
==============================
CPU Info
==============================
{cpu_info}
==============================
Versions of relevant libraries
==============================
{pip_packages}
{conda_packages}
""".strip()
# both the above code and the following code use `strip()` to
# remove leading/trailing whitespaces, so we need to add a newline
# in between to separate the two sections
env_info_fmt += "\n\n"
env_info_fmt += """
==============================
FastDeploy Info
==============================
FastDeply Version : {fastdeploy_version}
FastDeply Build Flags:
{fastdeploy_build_flags}
GPU Topology:
{gpu_topo}
==============================
Environment Variables
==============================
{env_vars}
""".strip()
def pretty_str(envinfo):
def replace_nones(dct, replacement="Could not collect"):
for key in dct.keys():
if dct[key] is not None:
continue
dct[key] = replacement
return dct
def replace_bools(dct, true="Yes", false="No"):
for key in dct.keys():
if dct[key] is True:
dct[key] = true
elif dct[key] is False:
dct[key] = false
return dct
def prepend(text, tag="[prepend]"):
lines = text.split("\n")
updated_lines = [tag + line for line in lines]
return "\n".join(updated_lines)
def replace_if_empty(text, replacement="No relevant packages"):
if text is not None and len(text) == 0:
return replacement
return text
def maybe_start_on_next_line(string):
# If `string` is multiline, prepend a \n to it.
if string is not None and len(string.split("\n")) > 1:
return "\n{}\n".format(string)
return string
mutable_dict = envinfo._asdict()
# If nvidia_gpu_models is multiline, start on the next line
mutable_dict["nvidia_gpu_models"] = maybe_start_on_next_line(envinfo.nvidia_gpu_models)
# If the machine doesn't have CUDA, report some fields as 'No CUDA'
dynamic_cuda_fields = [
"cuda_runtime_version",
"nvidia_gpu_models",
"nvidia_driver_version",
]
all_cuda_fields = dynamic_cuda_fields + ["cudnn_version"]
all_dynamic_cuda_fields_missing = all(mutable_dict[field] is None for field in dynamic_cuda_fields)
if TORCH_AVAILABLE and not torch.cuda.is_available() and all_dynamic_cuda_fields_missing:
for field in all_cuda_fields:
mutable_dict[field] = "No CUDA"
if envinfo.cuda_compiled_version is None:
mutable_dict["cuda_compiled_version"] = "None"
# Replace True with Yes, False with No
mutable_dict = replace_bools(mutable_dict)
# Replace all None objects with 'Could not collect'
mutable_dict = replace_nones(mutable_dict)
# If either of these are '', replace with 'No relevant packages'
mutable_dict["pip_packages"] = replace_if_empty(mutable_dict["pip_packages"])
mutable_dict["conda_packages"] = replace_if_empty(mutable_dict["conda_packages"])
# Tag conda and pip packages with a prefix
# If they were previously None, they'll show up as ie '[conda] Could not collect'
if mutable_dict["pip_packages"]:
mutable_dict["pip_packages"] = prepend(mutable_dict["pip_packages"], "[{}] ".format(envinfo.pip_version))
if mutable_dict["conda_packages"]:
mutable_dict["conda_packages"] = prepend(mutable_dict["conda_packages"], "[conda] ")
mutable_dict["cpu_info"] = envinfo.cpu_info
return env_info_fmt.format(**mutable_dict)
def get_pretty_env_info():
return pretty_str(get_env_info())
def main():
print("Collecting environment information...")
output = get_pretty_env_info()
print(output)
if TORCH_AVAILABLE and hasattr(torch, "utils") and hasattr(torch.utils, "_crash_handler"):
minidump_dir = torch.utils._crash_handler.DEFAULT_MINIDUMP_DIR
if sys.platform == "linux" and os.path.exists(minidump_dir):
dumps = [os.path.join(minidump_dir, dump) for dump in os.listdir(minidump_dir)]
latest = max(dumps, key=os.path.getctime)
ctime = os.path.getctime(latest)
creation_time = datetime.datetime.fromtimestamp(ctime).strftime("%Y-%m-%d %H:%M:%S")
msg = (
"\n*** Detected a minidump at {} created on {}, ".format(latest, creation_time)
+ "if this is related to your bug please include it when you file a report ***"
)
print(msg, file=sys.stderr)
if __name__ == "__main__":
main()