mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 20:02:53 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			397 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			397 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """
 | |
| # Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| """
 | |
| 
 | |
| from __future__ import annotations
 | |
| 
 | |
| from functools import partial
 | |
| from typing import Dict, Union
 | |
| 
 | |
| import numpy as np
 | |
| import paddle
 | |
| from paddle import nn
 | |
| from paddleformers.transformers import PretrainedModel
 | |
| from paddleformers.utils.log import logger
 | |
| 
 | |
| from fastdeploy.config import FDConfig
 | |
| from fastdeploy.model_executor.forward_meta import ForwardMeta
 | |
| from fastdeploy.model_executor.layers.mtp_linear import ParallelEHProjection
 | |
| from fastdeploy.model_executor.layers.normalization import RMSNorm
 | |
| from fastdeploy.model_executor.models.ernie4_5_moe import Ernie4_5_DecoderLayer
 | |
| from fastdeploy.model_executor.models.model_base import ModelForCasualLM
 | |
| 
 | |
| 
 | |
| class Ernie4_5_MTPPretrainedModel(PretrainedModel):
 | |
|     """
 | |
|     Ernie4_5_MTPPretrainedModel
 | |
|     """
 | |
| 
 | |
|     config_class = FDConfig
 | |
| 
 | |
|     def _init_weight(self, layer):
 | |
|         """
 | |
|         _init_weight
 | |
|         """
 | |
|         return None
 | |
| 
 | |
|     @classmethod
 | |
|     def _get_tensor_parallel_mappings(cls, config, is_split=True):
 | |
|         """
 | |
|         get_tensor_parallel_mappings
 | |
|         """
 | |
|         logger.info("erine inference model _get_tensor_parallel_mappings")
 | |
| 
 | |
|         from paddleformers.transformers.conversion_utils import split_or_merge_func
 | |
| 
 | |
|         fn = split_or_merge_func(
 | |
|             is_split=is_split,
 | |
|             tensor_parallel_degree=config.tensor_parallel_degree,
 | |
|             tensor_parallel_rank=config.tensor_parallel_rank,
 | |
|             num_attention_heads=config.num_attention_heads,
 | |
|         )
 | |
| 
 | |
|         def gqa_qkv_split_func(
 | |
|             weight,
 | |
|             tensor_parallel_degree,
 | |
|             tensor_parallel_rank,
 | |
|             num_attention_heads,
 | |
|             num_key_value_heads,
 | |
|             head_dim,
 | |
|         ):
 | |
|             def get_shape(tensor):
 | |
|                 return tensor.get_shape() if hasattr(tensor, "get_shape") else tensor.shape
 | |
| 
 | |
|             def slice_tensor(tensor, start, end):
 | |
|                 shape = get_shape(tensor)
 | |
|                 if len(shape) == 1:
 | |
|                     return tensor[start:end]
 | |
|                 else:
 | |
|                     return tensor[..., start:end]
 | |
| 
 | |
|             q_end = num_attention_heads * head_dim
 | |
|             k_end = q_end + num_key_value_heads * head_dim
 | |
|             v_end = k_end + num_key_value_heads * head_dim
 | |
| 
 | |
|             q = slice_tensor(weight, 0, q_end)
 | |
|             k = slice_tensor(weight, q_end, k_end)
 | |
|             v = slice_tensor(weight, k_end, v_end)
 | |
| 
 | |
|             def split_tensor(tensor, degree):
 | |
|                 shape = get_shape(tensor)
 | |
|                 size = shape[-1]
 | |
|                 block_size = size // degree
 | |
|                 if hasattr(tensor, "get_shape"):
 | |
|                     return [slice_tensor(tensor, i * block_size, (i + 1) * block_size) for i in range(degree)]
 | |
|                 else:
 | |
|                     return np.split(tensor, degree, axis=-1)
 | |
| 
 | |
|             q_list = split_tensor(q, tensor_parallel_degree)
 | |
|             k_list = split_tensor(k, tensor_parallel_degree)
 | |
|             v_list = split_tensor(v, tensor_parallel_degree)
 | |
| 
 | |
|             if tensor_parallel_rank is None:
 | |
|                 return [np.concatenate([q_i, k_i, v_i], axis=-1) for q_i, k_i, v_i in zip(q_list, k_list, v_list)]
 | |
|             else:
 | |
|                 return np.concatenate(
 | |
|                     [
 | |
|                         q_list[tensor_parallel_rank],
 | |
|                         k_list[tensor_parallel_rank],
 | |
|                         v_list[tensor_parallel_rank],
 | |
|                     ],
 | |
|                     axis=-1,
 | |
|                 )
 | |
| 
 | |
|         def gqa_qkv_merge_func(weight_list, num_attention_heads, num_key_value_heads, head_dim):
 | |
|             tensor_parallel_degree = len(weight_list)
 | |
|             num_attention_heads = num_attention_heads // tensor_parallel_degree
 | |
|             num_key_value_heads = num_key_value_heads // tensor_parallel_degree
 | |
| 
 | |
|             is_paddle_tensor = not isinstance(weight_list[0], np.ndarray)
 | |
| 
 | |
|             def get_shape(tensor):
 | |
|                 return tensor.get_shape() if hasattr(tensor, "get_shape") else tensor.shape
 | |
| 
 | |
|             def slice_tensor(tensor, start, end):
 | |
|                 if len(get_shape(tensor)) == 1:
 | |
|                     return tensor[start:end]
 | |
|                 else:
 | |
|                     return tensor[..., start:end]
 | |
| 
 | |
|             q_list, k_list, v_list = [], [], []
 | |
| 
 | |
|             for weight in weight_list:
 | |
|                 q_end = num_attention_heads * head_dim
 | |
|                 k_end = q_end + num_key_value_heads * head_dim
 | |
|                 v_end = k_end + num_key_value_heads * head_dim
 | |
| 
 | |
|                 q = slice_tensor(weight, 0, q_end)
 | |
|                 k = slice_tensor(weight, q_end, k_end)
 | |
|                 v = slice_tensor(weight, k_end, v_end)
 | |
| 
 | |
|                 q_list.append(q)
 | |
|                 k_list.append(k)
 | |
|                 v_list.append(v)
 | |
| 
 | |
|             merged = q_list + k_list + v_list
 | |
| 
 | |
|             if is_paddle_tensor:
 | |
|                 tensor = paddle.concat(merged, axis=-1)
 | |
|                 if tensor.place.is_gpu_place():
 | |
|                     tensor = tensor._copy_to(paddle.CUDAPinnedPlace(), False)
 | |
|                 return tensor
 | |
|             else:
 | |
|                 return np.concatenate(merged, axis=-1)
 | |
| 
 | |
|         if config.num_key_value_heads is not None and config.num_key_value_heads != config.num_attention_heads:
 | |
|             if is_split:
 | |
|                 qkv_fn = partial(
 | |
|                     gqa_qkv_split_func,
 | |
|                     tensor_parallel_degree=config.tensor_parallel_degree,
 | |
|                     tensor_parallel_rank=config.tensor_parallel_rank,
 | |
|                     num_attention_heads=config.num_attention_heads,
 | |
|                     num_key_value_heads=config.num_key_value_heads,
 | |
|                     head_dim=config.hidden_size // config.num_attention_heads,
 | |
|                 )
 | |
|             else:
 | |
|                 qkv_fn = partial(
 | |
|                     gqa_qkv_merge_func,
 | |
|                     num_attention_heads=config.num_attention_heads,
 | |
|                     num_key_value_heads=config.num_key_value_heads,
 | |
|                     head_dim=config.hidden_size // config.num_attention_heads,
 | |
|                 )
 | |
|         else:
 | |
|             qkv_fn = partial(fn, is_column=True)
 | |
| 
 | |
|         def get_tensor_parallel_split_mappings(num_layers, moe_num_experts, moe_layer_start_index):
 | |
|             """
 | |
|             get tensor from parallel-split-mappings
 | |
|             """
 | |
|             final_actions = {}
 | |
|             base_model_prefix = "ernie.mtp_block"
 | |
| 
 | |
|             base_actions = {}
 | |
| 
 | |
|             base_actions["ernie.mtp_linear_proj.0.weight"] = partial(fn, is_column=True)
 | |
|             base_actions[f"{base_model_prefix}.0.self_attn.qkv_proj.weight"] = qkv_fn
 | |
|             base_actions[f"{base_model_prefix}.0.self_attn.o_proj.weight"] = partial(fn, is_column=False)
 | |
|             base_actions[f"{base_model_prefix}.0.mlp.up_gate_proj.weight"] = partial(
 | |
|                 fn, is_column=True, is_naive_2fuse=True
 | |
|             )
 | |
|             base_actions[f"{base_model_prefix}.0.mlp.down_proj.weight"] = partial(fn, is_column=False)
 | |
| 
 | |
|             for expert_idx in range(moe_num_experts):
 | |
|                 base_actions[
 | |
|                     f"{base_model_prefix}.{moe_layer_start_index}" f".mlp.experts.{expert_idx}.up_gate_proj.weight"
 | |
|                 ] = partial(fn, is_column=True, is_naive_2fuse=True)
 | |
|                 base_actions[
 | |
|                     f"{base_model_prefix}.{moe_layer_start_index}" f".mlp.experts.{expert_idx}.down_proj.weight"
 | |
|                 ] = partial(fn, is_column=False)
 | |
| 
 | |
|             for key, action in base_actions.items():
 | |
|                 if (
 | |
|                     f"{base_model_prefix}.0.mlp.up_gate_proj.weight" in key
 | |
|                     or f"{base_model_prefix}.0.mlp.down_proj.weight" in key
 | |
|                 ):
 | |
|                     for i in range(moe_layer_start_index):
 | |
|                         final_actions[key.replace("0.", f"{i}.")] = action
 | |
|                 elif f"{moe_layer_start_index}.mlp.experts." in key:
 | |
|                     for i in range(moe_layer_start_index, num_layers):
 | |
|                         final_actions[key.replace(f"{moe_layer_start_index}.", f"{i}.")] = action
 | |
|                 elif f"{base_model_prefix}.0." in key:
 | |
|                     for i in range(num_layers):
 | |
|                         final_actions[key.replace("0.", f"{i}.")] = action
 | |
|                 final_actions[key] = action
 | |
|             return final_actions
 | |
| 
 | |
|         moe_num_experts = 0
 | |
|         mappings = get_tensor_parallel_split_mappings(
 | |
|             config.num_hidden_layers,
 | |
|             moe_num_experts,
 | |
|             config.moe_layer_start_index,
 | |
|         )
 | |
| 
 | |
|         return mappings
 | |
| 
 | |
| 
 | |
| class Ernie4_5_MTPModel(nn.Layer):
 | |
|     """
 | |
|     Ernie4_5_MTPModel
 | |
|     """
 | |
| 
 | |
|     def __init__(
 | |
|         self,
 | |
|         fd_config: FDConfig = None,
 | |
|     ):
 | |
|         """
 | |
|         Initializer for the Ernie4_5_MTPModel class.
 | |
| 
 | |
|         Args:
 | |
| 
 | |
|         """
 | |
|         super().__init__()
 | |
| 
 | |
|         self.num_layers = fd_config.model_config.num_hidden_layers
 | |
|         self.embed_tokens = fd_config.speculative_config.sharing_model.ernie.embed_tokens
 | |
| 
 | |
|         self.layers = nn.LayerList(
 | |
|             [
 | |
|                 Ernie4_5_DecoderLayer(
 | |
|                     fd_config=fd_config,
 | |
|                     prefix=f"{fd_config.model_config.pretrained_config.prefix_name}.{i}",
 | |
|                 )
 | |
|                 for i in range(self.num_layers)
 | |
|             ]
 | |
|         )
 | |
| 
 | |
|         self.enorm = RMSNorm(
 | |
|             fd_config,
 | |
|             hidden_size=fd_config.model_config.hidden_size,
 | |
|             eps=fd_config.model_config.rms_norm_eps,
 | |
|             prefix="ernie.mtp_emb_norm.0",
 | |
|         )
 | |
| 
 | |
|         self.hnorm = RMSNorm(
 | |
|             fd_config,
 | |
|             hidden_size=fd_config.model_config.hidden_size,
 | |
|             eps=fd_config.model_config.rms_norm_eps,
 | |
|             prefix="ernie.mtp_hidden_norm.0",
 | |
|         )
 | |
| 
 | |
|         self.eh_proj = ParallelEHProjection(
 | |
|             fd_config=fd_config,
 | |
|             num_embeddings=fd_config.model_config.hidden_size,
 | |
|             embedding_dim=fd_config.model_config.hidden_size * 2,
 | |
|             prefix="ernie.mtp_linear_proj.0",
 | |
|         )
 | |
| 
 | |
|     def load_state_dict(self, state_dict):
 | |
|         """
 | |
|         Load model parameters from a given state dictionary.
 | |
| 
 | |
|         Args:
 | |
|             state_dict (dict[str, np.ndarray | paddle.Tensor]):
 | |
|                 A dictionary containing model parameters, where keys are parameter names
 | |
|                 and values are NumPy arrays or PaddlePaddle tensors.
 | |
|         """
 | |
|         # self.embed_tokens.load_state_dict(state_dict)
 | |
|         self.enorm.load_state_dict(state_dict)
 | |
|         self.hnorm.load_state_dict(state_dict)
 | |
|         self.eh_proj.load_state_dict(state_dict)
 | |
|         for i in range(self.num_layers):
 | |
|             logger.info(f"Start load layer {i}")
 | |
|             self.layers[i].load_state_dict(state_dict)
 | |
| 
 | |
|     def forward(
 | |
|         self,
 | |
|         ids_remove_padding: paddle.Tensor,
 | |
|         previous_hidden_states: paddle.Tensor,
 | |
|         forward_meta: ForwardMeta,
 | |
|     ):
 | |
|         """
 | |
|         forward
 | |
|         """
 | |
|         inputs_embedding = self.embed_tokens(ids_remove_padding=ids_remove_padding)
 | |
|         inputs_embedding = paddle.concat(
 | |
|             [self.enorm(inputs_embedding), self.hnorm(previous_hidden_states)],
 | |
|             axis=-1,
 | |
|         )
 | |
|         hidden_states = self.eh_proj(inputs_embedding)
 | |
|         residual = None
 | |
|         for i in range(self.num_layers):
 | |
|             hidden_states, residual = self.layers[i](forward_meta, hidden_states, residual)
 | |
| 
 | |
|         hidden_states = hidden_states + residual
 | |
| 
 | |
|         return hidden_states
 | |
| 
 | |
| 
 | |
| class Ernie4_5_MTPForCausalLM(ModelForCasualLM):
 | |
|     """
 | |
|     Ernie4_5_MTPForCausalLM
 | |
|     """
 | |
| 
 | |
|     def __init__(self, fd_config: FDConfig):
 | |
|         """
 | |
|         Args:
 | |
|             fd_config (FDConfig): Configurations for the LLM model.
 | |
|         """
 | |
|         super(Ernie4_5_MTPForCausalLM, self).__init__(fd_config)
 | |
|         self.fd_config = fd_config
 | |
|         self.ernie = Ernie4_5_MTPModel(fd_config=fd_config)
 | |
| 
 | |
|         self.ori_vocab_size = fd_config.model_config.ori_vocab_size
 | |
| 
 | |
|         self.lm_head = fd_config.speculative_config.sharing_model.lm_head
 | |
|         self.tie_word_embeddings = fd_config.model_config.tie_word_embeddings
 | |
| 
 | |
|     @classmethod
 | |
|     def name(self):
 | |
|         """ """
 | |
|         return "Ernie4_5_MTPForCausalLM"
 | |
| 
 | |
|     @paddle.no_grad()
 | |
|     def set_state_dict(self, state_dict: Dict[str, Union[np.ndarray, paddle.Tensor]]):
 | |
|         """
 | |
|         Load model parameters from a given state dictionary.
 | |
| 
 | |
|         Args:
 | |
|             state_dict (dict[str, np.ndarray | paddle.Tensor]):
 | |
|                 A dictionary containing model parameters, where keys are parameter names
 | |
|                 and values are NumPy arrays or PaddlePaddle tensors.
 | |
|         """
 | |
|         self.ernie.load_state_dict(state_dict)
 | |
|         # if self.tie_word_embeddings:
 | |
|         #     self.lm_head.linear.weight.set_value(
 | |
|         #         self.ernie.embed_tokens.embeddings.weight.transpose([1, 0]))
 | |
|         # else:
 | |
|         #     self.lm_head.load_state_dict(state_dict)
 | |
| 
 | |
|     def compute_logits(self, hidden_states: paddle.Tensor):
 | |
|         """
 | |
|         compute logits
 | |
|         """
 | |
|         logits = self.lm_head(hidden_states)
 | |
|         logits = paddle.cast(logits, paddle.float32)
 | |
|         logits[:, self.ori_vocab_size :] = -float("inf")
 | |
| 
 | |
|         return logits
 | |
| 
 | |
|     def empty_input_forward(self):
 | |
|         """
 | |
|         empty_input_forward
 | |
|         """
 | |
|         fake_hidden_states = paddle.empty(
 | |
|             shape=[0, self.fd_config.model_config.hidden_size],
 | |
|             dtype=paddle.get_default_dtype(),
 | |
|         )
 | |
|         for i in range(
 | |
|             self.fd_config.model_config.moe_layer_start_index,
 | |
|             self.fd_config.model_config.num_hidden_layers,
 | |
|         ):
 | |
|             self.ernie.layers[i].mlp.fused_moe(fake_hidden_states)
 | |
| 
 | |
|     def forward(
 | |
|         self,
 | |
|         ids_remove_padding: paddle.Tensor,
 | |
|         previous_hidden_states: paddle.Tensor,
 | |
|         forward_meta: ForwardMeta,
 | |
|     ):
 | |
|         """
 | |
|         forward
 | |
|         """
 | |
|         hidden_states = self.ernie(ids_remove_padding, previous_hidden_states, forward_meta)
 | |
| 
 | |
|         return hidden_states
 | 
