Files
FastDeploy/fastdeploy/backends/paddle/paddle_backend.h
heliqi b064ddf7ed [Serving][backend]serving support multi stream and backend support external stream (#431)
* serving support multi stream

* pybind add external stream

Co-authored-by: Jason <jiangjiajun@baidu.com>
2022-10-26 14:46:13 +08:00

117 lines
3.6 KiB
C++
Executable File

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <iostream>
#include <memory>
#include <string>
#include <vector>
#include "fastdeploy/backends/backend.h"
#ifdef ENABLE_PADDLE_FRONTEND
#include "paddle2onnx/converter.h"
#endif
#include "paddle_inference_api.h" // NOLINT
#ifdef ENABLE_TRT_BACKEND
#include "fastdeploy/backends/tensorrt/trt_backend.h"
#endif
namespace fastdeploy {
struct PaddleBackendOption {
#ifdef WITH_GPU
bool use_gpu = true;
#else
bool use_gpu = false;
#endif
bool enable_mkldnn = true;
bool enable_log_info = false;
bool enable_trt = false;
#ifdef ENABLE_TRT_BACKEND
TrtBackendOption trt_option;
bool collect_shape = false;
#endif
int mkldnn_cache_size = 1;
int cpu_thread_num = 8;
// initialize memory size(MB) for GPU
int gpu_mem_init_size = 100;
// gpu device id
int gpu_id = 0;
bool enable_pinned_memory = false;
void* external_stream_ = nullptr;
std::vector<std::string> delete_pass_names = {};
};
// convert FD device to paddle place type
paddle_infer::PlaceType ConvertFDDeviceToPlace(Device device);
// Share memory buffer with paddle_infer::Tensor from fastdeploy::FDTensor
void ShareTensorFromFDTensor(paddle_infer::Tensor* tensor, FDTensor& fd_tensor);
// Copy memory data from paddle_infer::Tensor to fastdeploy::FDTensor
void CopyTensorToCpu(std::unique_ptr<paddle_infer::Tensor>& tensor,
FDTensor* fd_tensor);
// Convert data type from paddle inference to fastdeploy
FDDataType PaddleDataTypeToFD(const paddle_infer::DataType& dtype);
// Convert data type from paddle2onnx::PaddleReader to fastdeploy
FDDataType ReaderDataTypeToFD(int32_t dtype);
class PaddleBackend : public BaseBackend {
public:
PaddleBackend() {}
virtual ~PaddleBackend() = default;
void BuildOption(const PaddleBackendOption& option);
bool InitFromPaddle(
const std::string& model_file, const std::string& params_file,
const PaddleBackendOption& option = PaddleBackendOption());
bool Infer(std::vector<FDTensor>& inputs,
std::vector<FDTensor>* outputs) override;
int NumInputs() const override { return inputs_desc_.size(); }
int NumOutputs() const override { return outputs_desc_.size(); }
TensorInfo GetInputInfo(int index) override;
TensorInfo GetOutputInfo(int index) override;
std::vector<TensorInfo> GetInputInfos() override;
std::vector<TensorInfo> GetOutputInfos() override;
private:
#ifdef ENABLE_TRT_BACKEND
void CollectShapeRun(paddle_infer::Predictor* predictor,
const std::map<std::string, std::vector<int>>& shape) const;
void GetDynamicShapeFromOption(const PaddleBackendOption& option,
std::map<std::string, std::vector<int>>* max_shape,
std::map<std::string, std::vector<int>>* min_shape,
std::map<std::string, std::vector<int>>* opt_shape) const;
void SetTRTDynamicShapeToConfig(const PaddleBackendOption& option);
#endif
PaddleBackendOption option_;
paddle_infer::Config config_;
std::shared_ptr<paddle_infer::Predictor> predictor_;
std::vector<TensorInfo> inputs_desc_;
std::vector<TensorInfo> outputs_desc_;
};
} // namespace fastdeploy