Files
FastDeploy/fastdeploy/worker/gcu_worker.py
lizexu123 b01cfd6007 [BugFix] support real batch_size (#3109)
* support real bsz

* fix

* fix xpu_model_runner.py,gpu_model_runner.py,gcu_model_runner.py,iluvatar_model_runner.py

* add event_loop_ep

* fix

* Add comments

* fix

* support mtp real_batch_size

* fix

* self.tmp_seq_lens_this_time->self.seq_lens_this_time_buffer

* fix

* fix VL real_seq_lens_this_time

* fix

* fix mtp

* fix

* fix mtp

* fix xpu

* fix
2025-08-05 16:33:54 +08:00

139 lines
4.6 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import gc
from typing import List, Optional
import paddle
from paddle import nn
from fastdeploy.config import FDConfig
from fastdeploy.engine.request import Request
from fastdeploy.utils import get_logger
from fastdeploy.worker.gcu_model_runner import GCUModelRunner
from fastdeploy.worker.output import ModelRunnerOutput
from fastdeploy.worker.worker_base import WorkerBase
logger = get_logger("gcu_worker", "gcu_worker.log")
class GcuWorker(WorkerBase):
""" """
def __init__(
self,
fd_config: FDConfig,
local_rank: int,
rank: int,
):
super().__init__(
fd_config=fd_config,
local_rank=local_rank,
rank=rank,
)
pass
def init_device(self):
"""Initialize device and Construct model runner"""
if paddle.is_compiled_with_custom_device("gcu"):
# Set evironment variable
self.device_ids = self.parallel_config.device_ids.split(",")
self.device = f"gcu:{self.local_rank}"
paddle.device.set_device(self.device)
paddle.set_default_dtype(self.parallel_config.dtype)
logger.info(f"GcuWorker init_device:{self.device}, device_ids:{self.device_ids}")
gc.collect()
else:
raise RuntimeError(f"Not support device type: {self.device_config.device}")
# Construct model runner
self.model_runner: GCUModelRunner = GCUModelRunner(
fd_config=self.fd_config,
device=self.device,
device_id=self.device_ids[self.local_rank],
rank=self.rank,
local_rank=self.local_rank,
)
def exist_prefill(self):
"""
check whether prefill stage exist
"""
return self.model_runner.exist_prefill()
def determine_available_memory(self) -> int:
"""
Profiles the peak memory usage of the model to determine how much
memory can be used for KV cache without OOMs.
The engine will first conduct a profiling of the existing memory usage.
Then, it calculate the maximum possible number of GCU and CPU blocks
that can be allocated with the remaining free memory.
Tip:
You may limit the usage of GCU memory
by adjusting the `gcu_memory_utilization` parameter.
"""
raise NotImplementedError
def load_model(self) -> None:
""" """
self.model_runner.load_model()
def get_model(self) -> nn.Layer:
""" """
return self.model_runner.get_model()
def initialize_cache(self, num_gpu_blocks: int) -> None:
""" """
self.model_runner.update_share_input_block_num(num_gpu_blocks=num_gpu_blocks)
def execute_model(
self,
model_forward_batch: Optional[List[Request]] = None,
num_running_requests: int = None,
) -> Optional[ModelRunnerOutput]:
""" """
output = self.model_runner.execute_model(model_forward_batch, num_running_requests)
return output
def preprocess_new_task(self, req_dicts: List[Request], num_running_requests: int) -> None:
"""Process new requests and then start the decode loop
TODO(gongshaotian):The scheduler should schedule the handling of prefill,
and workers and modelrunners should not perceive it.
"""
self.model_runner.insert_prefill_inputs(req_dicts=req_dicts, num_running_requests=num_running_requests)
def graph_optimize_and_warm_up_model(self) -> None:
"""
Perform the warm-up and the graph optimization
"""
# 1. Warm up model
# NOTE(gongshaotian): may be not need warm_up at this place
if self.model_runner.graph_opt_level >= 1:
self.model_runner.sot_warmup()
# 2. Triger cuda grpah capture
self.model_runner.capture_model()
def check_health(self) -> bool:
""" """
return True
def cal_theortical_kvcache(self) -> int:
""" """
return self.model_runner.cal_theortical_kvcache()